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contemporaneously positively correlated with futures and spot market returns, and nega-

tively predicts futures and spot returns. These findings are consistent with the futures-cash

basis reflecting liquidity demand that is common to futures and cash equity markets. We

find persistent supply-demand imbalances for equity index exposure reflected in the basis,

giving rise to an annual premium of 5% to 6%.
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We study deviations from the textbook law of one price in equity index futures. In particular,

we consider the difference between the futures price and the hypothetical price of replicating

the futures contract by borrowing cash at the benchmark rate and purchasing shares in the

underlying. We refer to this pricing gap as the futures-cash basis, or simply, the basis.1 The

futures-cash basis reflects a wedge between benchmark borrowing rates and the true borrowing

rates that arbitrageurs face to finance their spot market positions. In equilibrium, the basis

emerges from a combination of supply-side frictions that intermediaries face, such as balance

sheet costs, and the amount of futures demand to be intermediated.2 While recent work focuses

primarily on the futures supply-side frictions that give rise to the basis, we focus on the demand

side, identifying several new implications that find support in the data. Focusing on the demand

side also allows us to explain cross-sectional variation in the sign and magnitude of the basis

across equity indices. Such heterogeneity is substantial in the data and has not been extensively

explored in previous work.

In addition to reflecting dealer financing costs, we argue that the futures-cash basis in global

equity markets reflects liquidity demand that is common to both futures markets and spot mar-

1The quantity we study is distinct from the difference between futures prices and spot prices, which is some-

times referred to as the futures-spot basis. The futures-cash basis that we study is also sometimes referred to by

practitioners as the implied repo rate, as we discuss in Section V.B. The existence of the futures-cash basis in eq-

uity index markets is documented by Cornell and French (1983), Figlewski (1984), MacKinlay and Ramaswamy

(1988), Harris (1989), Miller, Muthuswamy, and Whaley (1994), Yadav and Pope (1994), and Chen, Cuny, and

Haugen (1995), who present mixed evidence regarding whether the basis represents an arbitrage. Roll, Schwartz,

and Subrahmanyam (2007) link the futures-cash basis in NYSE composite futures with market liquidity.

2Other settings in which financing frictions lead to deviations from the law of one price include equity carve

outs (Lamont and Thaler (2003)), equity index options (Constantinides and Lian (2021), Chen, Joslin, and Ni

(2018), Golez, Jackwerth, and Slavutskaya (2018)), currencies (Garleanu and Pedersen (2011), Borio, McCauley,

McGuire, and Sushko (2016), Du, Tepper, and Verdelhan (2018)), TIPS/Treasuries (Fleckenstein, Longstaff,

and Lustig (2014)), CDS/bonds (Duffie (2010), Garleanu and Pedersen (2011)), and corporate bonds (Lewis,

Longstaff, and Petrasek (2021)).
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kets. To illustrate our argument, we present a model of liquidity demand, in which liquidity

traders and informed traders (who we refer to jointly as “end users” or “customers”) submit

market orders for equity index exposure to futures and spot markets, and orders are correlated

across the two markets. Dealers in futures markets meet futures demand and hedge their risk

exposure by trading in the spot market with risk-averse liquidity providers. Futures dealers face

marginal holding costs that increase with the amount of demand they intermediate, which are

reflected as the basis between futures prices and spot prices, with a more positive (negative)

basis corresponding to longer (shorter) futures demand. Liquidity providers in the spot market

meet both direct demand from customers and hedging demand from futures dealers, and they

require compensation for holding inventory opposite informed demand. Liquidity provider

compensation is reflected by an increase in prices contemporaneous with demand that reverts

after demand abates. Futures prices rise and fall by more than spot prices, corresponding to

the impact of futures dealer balance sheet costs. The trading behavior of market participants is

illustrated in Figure 1.

–Figure 1 here–

The model generates three novel predictions. The first is that the futures-cash basis is

negatively correlated with dealers’ futures positions and positively correlated with customers’

futures positions, stemming from the increasing marginal costs that futures dealers face in

meeting demand. The second prediction is that futures and spot returns are contemporaneously

positively correlated with changes in the basis (with the same sign). Changes in the basis reflect

order flow for an index, which is reflected in increasing futures and spot prices. This mecha-

nism also predicts that changes in dealers’ futures positions are contemporaneously negatively

correlated with futures and spot returns, while changes in customers’ positions are contempora-

neously positively correlated with futures and spot returns. The third prediction is that the basis

negatively predicts futures returns and spot returns, and with the same sign. The basis captures

the inventory of spot market liquidity providers, with more positive inventory corresponding to
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positive futures and spot returns. A corollary is that dealers’ futures positions positively predict

subsequent futures and spot returns, and customers’ futures positions negatively predict futures

and spot returns.

We test the first prediction by examining weekly data on investor futures positions from the

U.S. Commodity Futures Trading Commission (CFTC). Dealer net positions are strongly neg-

atively related to the basis, while the net positions of hedge funds and institutions are positively

related to the basis. Across equity indices, at a given point in time, the basis varies positively

with the strength of opposing positions between dealers and end users in the cross section. In

addition, for a given futures contract, the basis varies over time with the size of the opposing

positions of dealers and end users. These results are consistent with dealers taking the other

side of customer demand for futures, with dealers’ marginal costs (and the size of the basis)

increasing with end-user demand.

To test the second and third predictions of the model, we examine the relationship of the ba-

sis to equity index futures and spot market returns. Consistent with the second prediction of the

model, a one-standard-deviation increase in the basis corresponds to contemporaneous positive

weekly returns in futures and spot markets of 14 to 47 basis points (bps), depending upon the

specification. We also find that the futures-cash basis negatively predicts subsequent weekly fu-

tures returns and spot market returns that are two to five times larger than the magnitude of the

basis. Notably, the contemporaneous and predictive relationships between the basis and returns

are in the same direction for spot and futures returns, as uniquely predicted by the model. For

both predictions, we find evidence that the relationships hold in both time-series comparisons

for each index and cross-sectional comparisons across indices. Using CFTC futures position

data, we test the corollaries to the second and third predictions relating investor positions to

futures and spot market returns. We find evidence consistent with the model’s predictions.

Delving deeper into the third prediction, we quantify the return predictability associated

with the basis by constructing two weekly rebalanced trading strategies. The first is a cross-
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sectional trading strategy that goes long equity indices with a more negative basis and short

indices with a more positive basis. The second strategy is an index timing strategy that takes

long positions in equity indices with a positive basis relative to their histories, and short po-

sitions in indices with a negative basis relative to their histories. The trading strategies earn

substantial profits: the annualized Sharpe ratio of the cross-sectional strategy is 0.86 (0.62)

when implemented in futures contracts (spot markets), and that of the timing strategy is 0.69

(0.54) when implemented in futures contracts (spot markets).

The second and third predictions are unique to our explanation that the futures-cash basis

captures liquidity demand reflected in both futures and spot markets. Supply-side frictions,

such as balance sheet costs, are important for delivering the predictions that relate futures

demand with the basis and for allowing us to empirically detect futures demand in the data.

However, futures prices move substantially more than implied by the basis, and futures supply-

side frictions alone carry no predictions for the relationship between the basis and spot market

prices. These facts require a demand-based explanation, which we provide. Moreover, the em-

pirical results allow us to distinguish theories of futures demand. One alternative theory is that

because of their low transaction costs, high liquidity, and embedded leverage, futures contracts

are the preferred instrument for sophisticated traders to trade on their information. However, if

futures demand were primarily informed, we would not expect to observe that the basis (and

futures positions) negatively predict spot market returns. While some futures demand may be

informed, our results are consistent with customers using futures contracts as instruments to

demand equity market liquidity.

A key assumption for our story is that liquidity demand is highly correlated across futures

and spot markets. We provide evidence to support this assumption by using data on flows into

exchange-traded funds (ETFs) and open-end funds that are benchmarked to the U.S. indices

underlying the futures contracts in our sample. These funds primarily purchase shares in the

spot market when faced with inflows, corresponding to spot market liquidity demand. We
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find that flows into ETFs and open-end funds are strongly related to changes in the futures-

cash basis and to changes in the futures positions of dealers and hedge funds. The evidence is

consistent with hedge funds using both futures and ETFs to rebalance their equity exposure and

underscores that the basis captures demand for equity index exposure reflected in both futures

and spot markets.

Next, we more closely study the role that intermediary costs play in the basis, following

three different approaches. First, for a subset of our sample, we obtain pricing quotes on total

return swaps. These quotes are reported as spreads relative to benchmark interest rates, and

provide a direct measure of the all-in costs that dealers may face to provide leveraged exposure

to an equity index. We find that these quotes are highly correlated with the futures-cash basis

and have strong return predictability in futures and spot markets. The results using total return

swap pricing thus provide additional evidence on the role of the financing frictions that dealers

face.

Second, we study a mechanism through which dealers’ marginal financing costs are in-

creasing in the futures demand they intermediate. Equity repo (or related, securities lending)

is the preferred financing strategy for equity index futures dealers, in which they borrow cash

using their hedge positions as collateral. The benefit to dealers for using index shares as col-

lateral increases with the demand to borrow (and short) shares of the index, and decreases with

the corresponding supply.3 Ceteris paribus, an increase in long futures demand for an index,

and dealers’ subsequent use of the index’s shares as collateral, corresponds to an increase in the

supply of shares available to borrow. Accordingly, the marginal financing cost for that index,

and the futures-cash basis, increase. We test this mechanism using data on security lending

fees. We find evidence consistent with the mechanism.

3For our treatment, equity repo is largely interchangeable with securities lending, whereby shareholders lend

the securities out in exchange for cash. Song (2016) presents a model in which equity repo financing is the

preferred financing strategy for intermediaries in equity derivatives markets.
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Third, we study the role of balance sheet costs in the futures-cash basis. In our model, the

basis is a function of the amount of demand for that asset and the cost of balance sheet space.

We use the magnitude of pricing deviations in international markets and other asset classes to

proxy for variation in the cost of balance sheet space, and show that it explains variation in

the signed basis for U.S. equity indices when interacted with the signed positions of futures

dealers.

Our results connect the literature on intermediation costs to the literature on end-user de-

mand, dealer inventories, and asset prices (De Roon, Nijman, and Veld (2000), Chordia, Roll,

and Subrahmanyam (2002), Bollen and Whaley (2004), Garleanu, Pedersen, and Poteshman

(2009), Hendershott and Menkveld (2014), Greenwood and Vayanos (2014), Boons and Prado

(2019), and He, Khorrami, and Song (2022)), making clear that financing rates and asset de-

mand are interrelated. Our paper is particularly related to a growing body of work that empha-

sizes the role that institutional demand plays in prices across a variety of asset classes (Klingler

and Sundaresan (2019), Koijen and Yogo (2019), Greenwood and Vissing-Jorgensen (2019),

Koijen, Richmond, and Yogo (2020)).4 While other studies focus primarily on the effects of in-

stitutional demand in individual stocks or specialized assets, we show that institutional demand

forces can drive variation in the prices of entire equity markets, in line with recent evidence

presented by Koijen and Gabaix (2020).

The rest of the paper is organized as follows. Section I presents a model of liquidity demand

and outlines testable predictions. Section II presents the data and methodology for calculating

the futures-cash basis in equity index markets. Section III tests predictions from the model

relating the basis, dealer inventory positions, and returns. Section IV presents evidence on the

relationship between liquidity demand in futures and spot markets. Section V more closely

studies the role of dealer costs and financing frictions. Section VI concludes.

4In a similar spirit, Klingler and Sundaresan (2019) link negative swap-spreads (another type of basis) with

persistent demand for swaps by underfunded pension plans and dealers’ balance sheet constraints.
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I. Model of Liquidity Demand for Futures

We present a stylized model of liquidity demand to guide our empirical investigation.5 In

the model, futures dealers meet customer demand for futures and hedge their risk by trading

in the spot market, paying a balance sheet cost that is reflected in the basis. Risk-averse spot-

market liquidity providers meet direct demand from customers and dealer hedging demand,

requiring compensation for holding inventory. The mechanics of this trading are depicted in

Figure 1. The model motivates a set of predictions that relate investor positions, the basis, and

futures and spot market returns.

A. Model Setup

There are N assets, i = 1, . . . , N , in zero net supply, a futures contract traded on each risky

asset in each period in zero net supply, and a riskless asset in perfectly elastic supply with a zero

interest rate. Time is discrete, t = 0, 1, . . . , T . There are four groups of market participants:

informed traders, liquidity traders, futures dealers, and spot-market liquidity providers. We

refer to the first two groups jointly as end users or customers.

The value of asset i in the final period T is

vT = vi,0 +
T∑
t=1

δi,t +
T∑
t=1

ϵi,t +
T∑
t=1

et, (1)

which is paid as a terminal dividend. The innovations δi,t, ϵi,t and et are jointly normal, uncor-

related across time, and have variances σ2
δ , σ2

ϵ , and σ2
e , respectively. The innovations δi,t and

ϵi,t are uncorrelated across assets, while et is common to all assets.

A futures contract traded in period t is a promise to deliver one unit of asset i at the be-

5The model here is a simple extension of the model in Nagel (2012), which itself draws heavily from prior

models of liquidity provision, such as Kyle (1985), Grossman and Miller (1988), and Admati and Pfleiderer

(1988).
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ginning of period t + 1. The prices of asset i and the futures contract on i are denoted by P s
i,t

and P f
i,t, respectively. The basis at time t is defined as the difference between the futures price

and the hypothetical price of replicating the futures contract in the spot market. As there are

no intermediate dividends and the interest rate is zero, this replicating price is simply the spot

price. Hence, the basis is Bi,t ≡ P f
i,t − P s

i,t.

Informed traders and liquidity traders trade by submitting a constant fraction θ of their

demand for exposure to the risky asset as market orders for the futures contract and (1− θ) of

their demand as market orders for the spot asset. Liquidity traders demand a random, exogenous

amount zi,t of asset i in period t, where zi,t is normal, independent and identically distributed

over time and across assets, uncorrelated with δi,t and ξi,t, and has variance σ2
z .

The signals ϵi,t and et are public and observed at time t by all market participants. The in-

novation δi,t becomes public information at time t, but informed traders receive a private signal

in the previous period, si,t−1 = δi,t, that provides them a short-lived informational advantage.

The representative informed trader is myopic with exponential utility. As in Nagel (2012), her

asset demand is linear in her signal,

yi,t = βsi,t, (2)

where β captures the aggressiveness with which informed traders trade on their private signals.6

The total customer demand for asset i via the spot and futures markets is xi,t = yi,t + zi,t.

Futures dealers engage in riskless futures-cash basis arbitrage. For each index i, the rep-

resentative dealer takes a position di,t in the spot market and a position of −di,t in the futures

market such that the positions solve the objective function

max
di,t

Bi,tdi,t −
Ct

2
d2i,t. (3)

6The expression for β is nearly identical to the one derived in Nagel (2012).
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Dealers trade off profits from the basis trade against Ct

2
d2i,t, which can be considered a hold-

ing cost that dealers face to meet demand, where Ct > 0 is a constant. The quadratic total

cost means that dealers face marginal costs for each asset that increase in the demand for that

asset.7 One interpretation is that Ct captures the cost of expanding dealer balance sheets that

is common across all assets (e.g., from leverage constraints). In reduced form, the increasing

marginal costs may reflect increasing costs to finance positions in asset i, and may also reflect

dealers’ risk-management against holding large positions in any given basis trade.8

Futures market clearing (di,t = θxi,t) yields an expression for the basis:

Bi,t = Ctθxi,t.

Spot market liquidity providers satisfy the demand for θxi,t units of asset i from futures

dealers and (1 − θ)xi,t units of asset i coming directly from end users. The representative

competitive liquidity provider is myopic with CARA utility. Her asset demand is given by

mi,t = γ
(
E[δi,t+1|Mt] + vi,t − P s

i,t

)
, (4)

where Mt is her information set at time t. The aggressiveness with which liquidity providers

supply liquidity is represented by γ and is decreasing in the amount of risk and increasing in the

risk-bearing capacity of the market-makers.9 Because zi,t and δi,t+1 are independently normal,

7We assume a quadratic form simply to provide an expression for prices that is linear in demand. Our results

depend only on the convexity of the holding cost, which we discuss in more detail after presenting the model.

8One reason that marginal financing costs for asset i may be increasing in demand is that equity repurchase

and securities lending markets, where dealers prefer to obtain financing for equity market positions, are highly

segmented (Hu, Pan, and Wang (2021)). There are likely a limited number of other market participants willing to

accept the asset as collateral, or that want to borrow the asset against cash and sell it short.

9For example, γ can vary because of actual risk-aversion (e.g., as assumed in Grossman and Miller (1988)) or

because constraints induce liquidity providers to behave as if they are risk-averse (e.g., Value-at-Risk constraints,
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liquidity providers’ expectation of δi,t+1 is given by

E [δi,t+1|Mt] =
βσ2

δ

β2σ2
δ + σ2

z

xi,t ≡ ϕxi,t, (5)

where ϕ is defined to solve the equation and captures the informativeness of demand, xi,t,

about the forecastable component of period t+ 1, δi,t+1. Spot market clearing (xi,t +mi,t = 0)

provides expressions for the equilibrium prices of asset i and the futures contract written on

asset i:

P s
i,t =

(
1

γ
+ ϕ

)
xi,t + vi,t, (Spot Price)

P f
i,t = P s

i,t + Ctθxi,t. (Futures Price)

The equilibrium dollar return for asset i and the period t futures contract on i are defined as

Rs
i,t+1 ≡ P s

i,t+1 − P s
i,t = et+1 + ϵi,t+1 + ηi,t+1 +

(
1

γ
+ ϕ

)
xi,t+1 −

1

γ
xi,t, (Spot Returns)

Rf
t+1 ≡ P s

i,t+1 − P f
i,t = Rs

i,t+1 − Ctθxi,t, (Futures Contract Returns)

where ηi,t+1 ≡ δi,t+1 − ϕxi,t is the component of δi,t+1 that is unpredictable for liquidity

providers using period t information.

The basis for asset i scales linearly with the number of futures contracts demanded, re-

flecting dealer holdings costs to meet futures demand. Both futures returns and spot returns

have an unpredictable component at time t+ 1, which comes from unexpected order flow, and

a predictable component, which is the compensation earned by liquidity providers. Because

si,t+1 and zi,t+1 are independent across time, xi,t+1 is not predictable at time t. For the spot

returns, −xi,t represents the expected component of period t + 1 order flow, and − 1
γ
xi,t is the

as in Adrian and Shin (2010), or funding constraints, as in Brunnermeier and Pedersen (2008)).
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predictable component of returns that compensates the liquidity provider for bearing inven-

tory risk. Futures returns are equal to spot returns plus an additional predictable component,

−Ctθxi,t, which comes from dealers’ holding costs and represents futures converging to the

spot price at delivery.

B. Model Predictions

PREDICTION 1: The (signed) futures-cash basis is positively related to long futures demand

from customers and negatively related to dealers’ futures positions.

This prediction follows from the definition of the basis from the model (Bi,t = Ctθxi,t, where

θxi,t is customer demand for futures on asset i). The basis has the same sign as customer

demand and scales proportionally with the amount of customer demand.

This prediction shows how the signed basis behaves, in contrast with recent work that high-

lights the magnitude of the basis (for example, Du, Tepper, and Verdelhan (2018) and Andersen,

Duffie, and Song (2019)). However, it is not unique to our story and also holds under alternative

explanations, for example, if the basis represents an arbitrage opportunity.

PREDICTION 2: Changes in the basis are contemporaneously positively correlated with fu-

tures returns and spot returns (with the same sign).

COROLLARY: Changes in dealers’ futures positions are contemporaneously negatively cor-

related with futures returns and spot returns. Changes in customers’ futures positions are

contemporaneously positively correlated with futures returns and spot returns.

This prediction stems from each variable’s relationship with total order flow, ∆xi,t+1 ≡ xi,t+1−

xi,t. Changes in the basis, futures market returns, and spot market returns, are all increasing in

order flow. The contemporaneous correlations should be stronger in futures, as dealer balance

sheet costs are reflected only in futures prices, not in spot prices. The corollary follows because

order flow is directly captured by changes in dealers’ and customers’ futures positions.
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This prediction is unique to our model. Other explanations that do not focus on the common

spot and futures market demand captured by the basis might predict that the basis is contempo-

raneously increasing with futures contract returns, but they would predict that the basis should

be either contemporaneously negatively related to spot market prices or unrelated.

PREDICTION 3: The basis negatively predicts subsequent futures returns and spot returns

(with the same sign

COROLLARY: Dealers’ futures positions positively predict subsequent futures returns and

spot returns, and customers’ futures positions negatively predict subsequent futures returns

and spot returns.

This prediction directly follows from the fact that period t+ 1 returns are negatively related to

the total demand in period t, xi,t, reflecting compensation to spot market liquidity providers.

The predictive relationship should be stronger for futures returns, which include an additional

basis term. The corollary follows because dealers’ and customers’ positions capture xi,t.

This prediction is also unique to our story. Alternative explanations may suggest that the

basis negatively predicts futures returns, but they would predict either no relationship between

the basis and subsequent spot returns or a positive relationship.

B.1. Cross-Sectional Predictions

Each of the predictions holds as a cross-sectional prediction as well as an asset-level pre-

diction. For example, Prediction 2 states that we expect an increase in the basis to correspond

to positive spot and futures market returns for a given index. The model also predicts that in

cross-sectional comparisons, indices with larger increases should have larger futures and spot

market returns.
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C. Discussion of the Model

An important ingredient for the model’s main insights is that dealers face holding costs

that increase in demand. One of these costs is Ct, which is common to all assets and may

capture the cost of expanding dealer balance sheets, including regulatory capital requirements

and shareholder costs from debt overhang (as discussed in Andersen, Duffie, and Song (2019)

and Fleckenstein and Longstaff (2020)).10 Another of these costs is asset-specific, with higher

marginal holding costs for assets that are more heavily demanded by customers.11 Dealers

may employ position limits, which may partially explain the higher marginal costs for assets in

greater demand. Additionally, futures dealers prefer to borrow cash using their hedge positions

as collateral. Holding fixed the demand for borrowing shares, additional futures demand pushes

dealers to increase the supply of shares available to borrow, which all else equal decreases the

marginal benefit they receive from using the shares as collateral. In turn, futures demand is

reflected as higher marginal funding costs for dealers. We discuss this channel in more detail

in Section V.

Another important ingredient for the model is that informed traders and liquidity traders

submit trades in both the futures market and the spot market. Liquidity providers in the spot

market meet that demand either directly or intermediated via dealers, and require compensation

for doing so. Two natural questions arise: why do investors trade in futures markets at all, if

there is an additional associated cost (the basis), and, how realistic is the model’s asumption

that informed and liquidity demand are perfectly correlated across futures and spot markets?

With respect to the first question, futures allow investors to gain substantial equity exposure

in a cash-efficient way by posting a small amount of margin relative to the notional exposure

10In addition to balance sheet costs, the basis may also partially reflect imperfect competition. See Wallen

(2022).

11This assumption is also made in other recent works studying deviations from the law of one price, for exam-

ple, Liao and Zhang (2020), who study deviations from covered interest rate parity.
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they gain. Margin trading in cash equities is more expensive. Additionally, to replicate an

index, an investor has to purchase each stock in the index, whereas they only execute one trans-

action to buy index futures. Investors that are not informed about cross-sectional differences in

single stock returns may prefer trading in a single “basket” security to avoid trading costs from

adverse selection (Subrahmanyam (1991) and Gorton and Pennacchi (1993)).

With respect to the second question, the model delivers the same predictions so long as

futures demand is strongly related (but does not have to be perfectly related) to the demand that

spot market liquidity providers face. This assumption is plausible as some classes of investors,

for example, hedge funds and institutional investors, trade in both futures and spot markets.

We also provide empirical support for this assumption in Section IV, where we find a strong

relationship between hedge fund demand for futures on an index and flows into ETFs and

mutual funds benchmarked to that index. Finally, since dealers hedge their futures positions

in the spot market, there should be some connection between demand in both markets, though

this channel likely explains only a small component of that demand.

Importantly for our story, liquidity demand is commonly reflected in both the futures mar-

ket and the spot market. The predictions of our model stand in contrast with another plausible

story that futures contracts, given their low transaction costs and high liquidity, are the pre-

ferred instrument for sophisticated traders to trade on their information. Under this alternative

story, the futures demand captured by the basis should not negatively predict returns in the spot

market. We test this alternative story and conclude that while some traders may trade futures

for information-based reasons, equity index futures markets are an important venue for market

participants to demand liquidity for equity exposure.

II. Data and Methodology

In this section we describe the data and methodology for computing the basis and we present

summary statistics.
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A. Data

We study listed futures on 18 developed equity market indices: S&P 500 (U.S.), NASDAQ

(NASDAQ), Russell 2000 (U.S.RU2K), S&P 400 MidCap (U.S.SPMC), Dow Jones Indus-

trial Average (DJIA), S&P TSE 60 (Canada, CN), FTSE 100 (United Kingdom, UK), EU-

ROSTOXX (European Union, EUROSTOXX), CAC40 (France, FR), DAX (Germany, BD),

IBEX (Spain, ES), FTSE MIB (Italy, IT), AEX (Netherlands, NL), Hangseng (Hong Kong,

HK), Topix (Japan, JP), OMXS30 (Sweden, SD), SMI (Switzerland, SW), and ASX SPI 200

(Australia, AU). All futures are cash settled. The sample period is the period over which we

have intraday pricing data used to compute the basis, namely January 2000 to December 2017.

We compute futures returns using daily settlement prices for the nearest-to-expiration fu-

tures contract for each index, excluding returns on collateral from transacting. These are es-

sentially excess returns. We calculate excess spot market returns for each index using the daily

gross total return of the index, assuming all dividends are not taxed and are fully reinvested,

less the local interbank rate. Data used to compute returns come from Bloomberg.

B. Computing the Basis

The price of a futures contract can be expressed as

Ft = St

(
1 + rft

)
− EQ

t (Dt+1), (6)

where Ft is the futures price, St is the spot price, rft is the embedded financing rate, and

EQ
t (Dt+1) are the true risk-neutral expected dividends in period t + 1. We express the hy-

pothetical price of replicating the futures contract as

F̂t = St

(
1 + r̂t

f
)
− ÊQ

t (Dt+1) , (7)

where r̂t
f is the benchmark financing rate and ÊQ

t (Dt+1) are the measured dividend expecta-
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tions.

We define the futures-cash basis in period t as the difference between the price of a futures

contract and the hypothetical price of replicating the futures contract, normalized by the spot

price and the contract’s time to maturity in years (denoted by m). This can be written as

Basist = (St ×m)−1
(
Ft − F̂t

)
= (St ×m)−1

(
(Ft − St)− (F̂t − St)

)
=

1

m

(
rft −

EQ
t (Dt+1)

St

)
︸ ︷︷ ︸

Cost of Carry

− 1

m

(
r̂t

f − ÊQ
t (Dt+1)

St

)
︸ ︷︷ ︸

Hypothetical Cost of Carry

.

(8)

As expressed in equation (8), the basis is equal to the cost of carry of a futures contract minus

the hypothetical cost of carry. The scalar 1/m expresses the basis in annual terms.12

To compute the basis, we require data on dividend expectations, benchmark interest rates,

and futures and spot prices. Data on risk-neutral dividend expectations are not systematically

available for our sample. From January 2007 through the end of our sample, we use daily point-

in-time forecasts of index dividends provided by Goldman Sachs as our measure of dividend

expectations. The forecasts are constructed from dividend estimates for the index constituents

and are provided as “dividend points,” which are in units of the price level of the index. From

2000 through 2006, we use daily data on the realized dividends of an index from t to t + 1 to

proxy for dividend expectations. The basis that we measure includes a dividend “error term,”

which reflects the difference between the true risk-neutral expectation of dividends and our

measure of expectations. These differences may stem from dividend risk premia, taxation of

dividends, and measurement error. In Section II of the Internet Appendix, we extensively

12The cost of carry here is the negative scaled value of carry studied in Koijen, Moskowitz, Pedersen, and

Vrugt (2018) across asset classes.
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analyze the impact of this error term.13 We find that it does not meaningfully contribute to our

headline results. Additionally, in Section V below, we analyze the pricing of total return swaps,

which provide a measure related to the basis that is not affected by measurement issues related

to dividends. The analysis confirms that the dividend error term is not the primary driver of our

results and has little impact.

We use the local interbank offered rate, measured daily and interpolated to match the ma-

turity of the futures contract, as the benchmark interest rate. Dealers’ actual financing rates

may differ from the benchmark rate, due to balance sheet costs and other considerations such

as securities lending. Put differently, our benchmark rate does not reflect all financing consid-

erations for dealers. However, it is exactly the wedge created by these other financing consid-

erations, which vary with the amount of futures demand that dealers face, that we are interested

in capturing and studying.14

We use pricing data from Thompson Reuters Tick History (TRTH) to construct the basis.

For spot index prices, the database contains the last traded prices of each index at a minute-

by-minute frequency, aggregated from the last traded prices of the individual constituents in

the index. For futures prices, the database contains tick-level data, which we use to compute

minute-by-minute futures prices by taking the midpoint from the last bid and ask quotes. We

aggregate the futures and spot prices to daily values by taking the mean across all minutes

for which we have prices in both markets. Relative to using end-of-day pricing, this approach

reduces estimation error and controls for asynchronous closing prices in futures markets and

13The Internet Appendix is available in the online version of the article on the Journal of Finance website.

14Our headline results remain the same using alternate benchmark rates, for example, overnight indexed swap

rates. In Section IV of the Internet Appendix, we show that our headline results also persist in cross-sectional

comparisons of indices with the same benchmark rate. Our results also have implications for other work that

considers the interest rates embedded in derivatives prices (e.g., van Binsbergen, Diamond, and Grotteria (2022)),

which we discuss in more detail in Section VI of the Internet Appendix.
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cash equity markets.15 We construct values of the basis at a daily frequency, using our data on

prices, dividend expectations, and interest rates.

For each equity index, we construct a series that combines the basis of individual futures

contracts with different expirations. We use the near contract until 10 days before expiration,

where most of the trading takes place in this market. Within 10 days to expiration, we use

a linear combination of the basis values of the nearest and second-nearest contracts, with the

weight on the front contract transferring linearly to the back contract as the front contract nears

maturity.16

C. Cost of Carry and the Futures-Cash Basis

To more clearly present our calculation of the futures-cash basis and illustrate some of the

dynamics of the basis, in Figure 2 we zoom in on the period from January 2015 to December

2017 and plot daily values of the cost of carry, the hypothetical cost of carry, and the futures-

cash basis for two indices: the S&P 500 and the Russell 2000.

The top panel of the figure plots the values for the S&P 500 index. The hypothetical and true

cost of carry are negative on average, but rising at the end of the period, tracking the difference

between interest rates and dividend yields in this period. The hypothetical cost of carry moves

with the cost of carry, but not perfectly so. Both display some seasonal fluctuations, which

correspond largely with the seasonality of dividends. The basis is positive on average, though it

can and does become negative. It also displays occasional upwards or downwards spikes around

quarterly futures expirations, which may be driven by a combination of scaling by maturity for

15For example, spot trading for S&P 500 index constituents ends at 4:00 PM, while futures markets close at

4:15 PM.

16This choice mitigates spikes in the basis around contract expirations, which are due to scaling by maturity

and to trading around contract expirations. Results are robust to alternative methodological choices for combining

contract-level basis values, such as using an open-interest weighted combination of the basis values.
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maturities close to zero and by the trading behavior of market participants “rolling” their futures

positions (trading out of the nearest expiration contract and into the second-nearest expiration

contract).

The bottom panel of the figure plots values for the Russell 2000 index. The values display

similar properties as those of the S&P 500, though they are more volatile. Notably different is

the fact that the basis is negative on average, though it is moderately positive in parts of 2016

and 2017. We further discuss this negative average value in the next section, which appears to

be related to the fact that futures dealers tend to face substantial short demand in Russell 2000

futures.

–Figure 2 here–

D. Summary Statistics of the Basis

Table I reports summary statistics for the futures-cash basis in global equity markets. We

report summary statistics for the full sample, as well as for two subsamples: January 2000

to June 2007, and July 2007 to December 2017. Panel A reports the average basis, average

absolute value of the basis, and average time-series and cross-sectional standard deviations of

the basis in annualized basis points.17 For global equities, the average basis is -1 bp, but the

average absolute value of the basis is 57 bps, the average time-series standard deviation is 92

bps, and the average cross-sectional standard deviation is 90 bps. These numbers suggest that

the basis is close to zero on average, but there is substantial variation in the basis over time and

across indices. The magnitude of and variation in the basis are slightly lower in the post-2007

period than in the pre-2007 period.

Panel B reports the average pairwise correlation of the futures-cash basis across the indices

in our sample, both for the full sample and for the two sub-samples. Over the full sample, the

17We report asset-by-asset summary statistics of the basis in Internet Appendix Table IA.II, and we plot the

basis for each index in Internet Appendix Figure IA.1.
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average correlation of the basis across indices is 0.17; this value is higher in the second part of

the sample (0.22) than in the first part of the sample (0.11). Because the indices in our sample

trade asynchronously, we also report the average pairwise correlation of the three-day rolling

average of the basis. The reported values are similar. For comparison, the last two columns of

Panel B also report the average pairwise correlation of returns (0.53) and the three-day rolling

average of returns (0.67). Panel C reports the average pairwise correlation of the basis across

the U.S. indices in our sample. The average full-sample correlation is 0.57, and the average

correlation is again higher in the second part of the sample (0.61) than in the first part of the

sample (0.42). These numbers are higher than the international correlations, but are lower than

the average correlation of returns across the U.S. indices (0.89 over the full sample).

Panels B and C suggest a positive correlation in the basis across indices, driven perhaps by

correlated demand. There is also a substantial index-specific component to the basis, and the

correlation of the basis is considerably lower than the correlation of returns across indices.

–Table I here–

III. Testing the Model Predictions

In this section, we test the three predictions of the model. We test the first prediction by

analyzing the relationship between the basis and investor positions in futures contracts for U.S.

indices for which we have futures position data. We test the second and third predictions

regarding the relationship between the basis and returns using all of the global indices in our

sample. We use the investor position data for the U.S. indices to test the corollaries to the

second and third predictions.
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A. Prediction 1: The Relationship Between Futures Positions and the Basis

The first prediction is that the futures-cash basis should be negatively related to the futures

positions of futures dealers and positively related to the futures positions of end users (i.e.,

informed traders and liquidity traders).

To test this prediction, we use data on futures positions from the CFTC. For financial futures

traded on U.S. exchanges, the CFTC publishes the Traders in Financial Futures (TFF) report

every Thursday, which provides the aggregate long and short positions of investors categorized

into four groups: Dealers/Intermediaries, Institutional Asset Managers, Levered Funds (which

we refer to as hedge funds), and Other Reportables.18 For equity index i and investor category

c, we define net positions as:

Net Positionsi,c =
Long Positionsi,c − Short Positionsi,c

Open Interesti
. (9)

This signed measure captures whether investors in a given category are net long or short in

aggregate, and scales their net positions by the open interest.19

Most trading in equity index futures occurs on exchanges, as opposed to over-the-counter.

Net positions from the TFF report should therefore capture a substantial amount of the overall

positions of investors in equity index derivatives. For our sample, we have data on futures

positions for the S&P 500, S&P 400, DJIA, Russell 2000, and NASDAQ indices.

18These designations come from Form 40 filings completed by reportable traders, as mandated by the CFTC.

Dealers/Intermediaries “tend to have matched books. . . [and] include large banks. . . and dealers in securities,

swaps, and other derivatives.” The Institutional designation includes “pension funds, endowments, insurance com-

panies, mutual funds, and portfolio/investment managers whose clients are predominantly institutional,” while

Levered Funds include “hedge funds and various types of money managers.” The Other Reportables category

includes traders who “mostly are using markets to hedge business risk.”

19We construct our net position variables following the approach of Brunnermeier, Nagel, and Pedersen (2008)

and Moskowitz, Ooi, and Pedersen (2012), who construct net position variables using the CFTC Commitments of

Traders report, a report similar to the one we use that groups traders into more coarse categories.
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Before directly testing the first prediction, we provide additional color on the data. Figure

3 plots the time series of each of the position series for each equity index. With the exception

of the Russell 2000, dealer positions are on average net negative over the sample period, while

institutional and hedge fund positions are net positive (the opposite holds for the Russell 2000 in

this sample period). For each index, dealers hold the largest net positions, which are negatively

correlated with those of all other investor categories. Together with Figure 2, the figure also

reveals that the basis tends to be positive when dealers face long futures demand (and hold

short futures positions) and negative when dealers face short futures demand. In the S&P 500,

dealers tend to hold short futures positions, but briefly hold a long futures position from mid-

2015 through mid-2016; the basis is negative during this period, but is positive for the rest of

2015 through 2017. For the Russell 2000, dealers tend to hold a long futures position, and

the basis is correspondingly negative (the sample average is -76 bps, as reported in Internet

Appendix Table IA.II). Towards the end of 2017, dealers’ net positions switch to being short

futures, and the basis correspondingly becomes positive.

–Figure 3 here–

Table II reports the correlations of net positions across investor categories. Panel A reports

the average correlation of net positions by investor type within each index. For example, the

entry in the Dealer column and Institutional row represents the correlation between net posi-

tions of dealers and institutional investors calculated for each index and then averaged across

the indices. The average within-index correlation of dealer and institutional net positions is

-0.66. Similarly, the average correlation of dealer and hedge fund net positions is -0.68, and the

average correlation of dealer and other net positions is -0.28. The strong negative relationship

between dealer positions and positions of other types of investors is consistent with dealers

taking the other side of the futures demand of end users in equity markets.20

20Customer demand may alleviate dealer balance sheet constraints, if customers purchase assets that dealers
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Panel B of Table II reports the average pairwise correlation of net positions by investor type

across indices. For example, the entry in the Dealer row and Dealer column corresponds to the

average pairwise correlation of net positions of dealers in one index with dealer positions in

the other indices, averaged across all indices. On average, dealer positions have a correlation

of 0.36 across indices. For other investors, positions are correlated across indices, with the

strongest correlation for hedge funds (0.39). Panel B of Table II suggests a channel through

which the basis is correlated across indices: the correlation between dealer (and customer)

positions. However, like the basis, positions also exhibit a strong index-specific component.

–Table II here–

We test the relationship between dealer positions and the basis by running a panel regression

of the annualized futures-spot basis on dealer net positions. Table III shows a strong negative

relationship between dealer net positioning and the basis. The coefficient on dealer positions

(which is scaled to mean zero and unit variance) is strongly significant, with a t-statistic of -

3.74 (column (1)). Adding entity and time fixed effects reduces the coefficient but continues to

yield a strong and significant negative relationship. The negative relationship holds both in the

cross-section (at a given time, indices with more negative dealer positions have more positive

bases) and the time series (for a given index, when dealer positions are more negative, the basis

is more positive). The regression coefficients suggest that a one-standard-deviation increase

in dealer positioning corresponds to a decrease in the basis ranging from 28.9 bps (with no

fixed effects) to 10 bps (with time and entity fixed effects). These findings are consistent with

dealers facing increasing marginal costs for meeting additional futures demand, resulting in a

futures-cash basis that increases with demand.

We next investigate the relationship between end-user positions and the futures-cash basis.

We run multivariate regressions of the futures-cash basis on net positions by institutional in-

are holding. However, the persistent opposing signs of dealer and end user positions, together with the regression

results, suggest that on average, customer demand induces dealers to expand their balance sheets.
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vestors, hedge funds, and other reportables. The last four columns of Table III report the results.

Across all specifications, institutional investor positions are significantly positively related to

the futures-cash basis. A one-standard-deviation change in institutional investor positions leads

to a 6.7 bp to 20.6 bp increase in the futures-cash basis, depending on the fixed effects specifica-

tion. Hedge fund positions are also positively related to the basis, with a one-standard-deviation

change in hedge fund positions corresponding to a 3.8 bp to 19.7 bp increase in the futures-cash

basis. Other investor positions are also related to the basis, though the coefficients are smaller.

In Internet Appendix Figure IA.5, we report t-statistics from time-series regressions of the

basis on the net futures positions of each investor category for each individual U.S. index.

The negative relationship between the basis and dealers’ futures positions, and the positive

relationship between the basis and hedge fund and institutional investor futures positions holds

for each of the five U.S. indices in our sample, providing further evidence in support of our

story.

Overall, Table III shows that investor positions capture substantial variation in the futures-

spot basis, explaining 26% of the variation over time and across markets without any controls

and 69% of the variation together with time and entity fixed effects. The basis is strongly

negatively correlated with dealer positions in futures, and strongly positively correlated with

end user positions in futures, consistent with Prediction 1.

–Table III here–

B. Prediction 2: The Contemporaneous Relationship Between the Basis and
Returns

The second model prediction is that changes in the basis are positively contemporaneously

correlated with futures and spot market returns. We test this prediction by running a set of panel
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regressions of the form

rfuti,t+1 = ai + bt+1 + c(Basisi,t+1 −Basisi,t) + ϵi,t+1 (10)

rspoti,t+1 − rf,t = αi + βt+1 + γ(Basisi,t+1 −Basisi,t) + ηi,t+1, (11)

where Basisit is the futures-cash basis in market i measured in period t, rit+1 is the excess return

of asset i from period t to period t + 1, ai is the asset-specific intercept (or fixed effect), bt+1

denote time fixed effects, and c and γ are the coefficients of interest that capture the contem-

poraneous relationship between the basis and returns. Regressions are estimated using weekly

return data, in bps, where we scale the basis to have zero mean and unit standard deviation.

Standard errors are clustered by asset and time.

Panel A of Table IV reports the results. Columns (1) to (4) display results for regressions in

which the dependent variable is the futures return for a given market. Coefficients range from

47.4 with no fixed effects (t-statistic 5.25) to 18.0 with time and entity fixed effects (t-statistic

5.39). Columns (5) to (8) of report results for regressions in which the dependent variable is

the spot return for a given market. Coefficients range from 43.2 with no fixed effects (t-statistic

4.99) to 13.7 with time and entity fixed effects (t-statistic 3.91). The coefficients indicate that

a one-standard-deviation increase in the basis corresponds to a weekly futures return of 18 bps

to 47 bps, and a weekly spot market return of 14 bps to 43 bps.21 The smaller weekly spot

market return of approximately 4 bps (or approximately 2% annualized) reflects the effect of

the increasing basis.

21The cross-sectional standard deviation of changes in the weekly basis (averaged over time) is approximately

0.015 and the time-series standard deviation of changes in the weekly basis (averaged across indices) is approx-

imately 0.017. For comparison, the cross-sectional standard deviation of weekly returns (averaged over time) is

1.46% and the time-series standard deviation of weekly returns (averaged across indices) is 2.81%. The more

substantial time-series standard deviation of returns contributes to the difference in coefficients based on the fixed

effect specification.
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In Internet Appendix Figure IA.6, we report the t-statistics from contemporaneous time-

series regressions of weekly futures and spot returns on changes in the basis for each individual

index. The figure shows that the relationship between changes in the basis and futures and spot

returns is positive for seventeen of the 18 indices in our sample, providing further evidence

that the contemporaneous relationship between changes in the basis and returns holds across

different equity markets.

Importantly, the sign of the relationship between futures market returns and the basis is the

same as the sign of the relationship between spot market returns and the basis. The positive

relationship between the basis and futures and spot market returns is consistent with a unique

prediction of our model, namely that the basis captures futures demand that is also reflected in

the spot market. Other theories of the futures-cash basis may predict no relationship between

the basis and spot market returns, or may predict that the relationship should be opposite that

with futures returns.

We also test the corollary to the second prediction, which holds that changes in dealers’

(customers’) futures positions should be negatively (positively) correlated with futures market

and spot market returns. To test this corollary, we use the CFTC net futures positions data to

run the regressions

rfuti,t+1 = ai + bt+1 + g(F c
i,t+1 − F c

i,t) + ϵi,t+1 (12)

rspoti,t+1 − rf,t−1 = αi + βt+1 + γ(F c
i,t+1 − F c

i,t) + ηi,t+1, (13)

where F c
i,t is the net positions of investor category c at time t in index i. Changes in investor net

positions are standardized to have zero mean and unit standard deviation (returns are in bps).

Standard errors are clustered by entity and time.

Panel B of Table IV reports the regression results. We report results for specifications that

include time and entity fixed effects. The first (last) four columns display results for regressions
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in which the dependent variable is futures (spot) market returns. The results suggest that a

one-standard-deviation increase in futures dealer positioning corresponds to a -15 bp weekly

futures market return (t-statistic −3.16) and a −14 bp weekly spot market return (t-statistic

−3.08). Turning to end-user positions, the results suggest that a one-standard-deviation change

in institutional investor positions corresponds to a 15 bp weekly futures return (t-statistic 7.14)

and a 14 bp weekly spot market return (t-statistic 6.99), and a one-standard-deviation change

in hedge fund positions corresponds to a 7 bp weekly futures return (t-statistic 1.54) and a 7 bp

weekly spot market return (t-statistic 1.45).

Because independent variables in the regressions are standardized to have zero mean and

unit standard deviation, the coefficients on futures positions in Panel B are directly comparable

to the coefficients reported in Panel A with time and entity fixed effects (columns (4) and

(8)). The 14 bp to 15 bp weekly return corresponding to a one-standard-deviation change in

dealer positions is similar to the 14 bp to 18 bp weekly return corresponding to a one-standard-

deviation change in the basis. For context, the average weekly return for all indices in the

sample is approximately 11 bps, and the average weekly return of the U.S. indices over the

period for which we have position data (2006 to 2017) is about 20 bps. Hence, the magnitude

of the relationship between futures positions, the basis, and returns is economically large.

These results, together with the evidence for Prediction 1, support the mechanism through

which changes in the basis are contemporaneously related to futures and spot market returns.

In particular, the basis captures demand for futures market exposure from customers, which is

intermediated by futures dealers. Increases in the basis and more negative dealer futures po-

sitions capture increased futures demand, which corresponds to rising futures and spot market

prices.

–Table IV here–
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C. Prediction 3: The Predictive Relationship Between the Basis and Returns

The third prediction of the model is that the basis should negatively predict subsequent spot

and futures returns. To test this prediction, we run the panel regressions

rfuti,t+1 = ai + bt+1 + cBasisi,t + ϵi,t+1 (14)

rspoti,t+1 − rf,t = αi + βt+1 + γBasisi,t + ηi,t+1, (15)

where rit+1 is the return of asset i, ai and αi are asset-specific intercepts, bt+1 and βt+1 are time

fixed effects, and Basisi,t is the futures-cash basis for asset i measured in the previous period.

The coefficients c and γ capture the predictive relationship between the basis and subsequent

returns. Regressions are estimated using weekly return data, in bps, where we scale the basis

to be in bps per week. Standard errors are clustered by asset and time.

Panel A of Table V reports the results. Columns (1) to (4) report results when the dependent

variable is the futures return for a given market. Coefficients in the futures market regressions

range from −5.1 with no fixed effects (t-statistic −3.42) to −3.8 with time and entity fixed

effects (t-statistic −4.21). Columns (5) to (8) report results when the dependent variable is the

spot return for a given market. Coefficients in the spot market regressions range from −3.5

with no fixed effects (t-statistic −2.50) to −2.2 with time and entity fixed effects (t-statistic

−2.14). The regression coefficients suggest that for a basis of 10 bps per week, the subsequent

week’s futures returns are 38 to 51 bps lower and the subsequent week’s spot returns are 22 to

35 bps lower.

The significant negative relationship between the basis and the subsequent week’s futures

and spot returns is consistent with our liquidity demand-based explanation for the futures-cash

basis. The unique part of this prediction is that the basis forecasts futures market returns and

spot market returns with the same sign, which is borne out in the data.

The variables in the regression are scaled such that the basis converging to zero, without
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any additional return effects, would coincide with −1 ≤ γ ≤ 0, 0 ≤ c ≤ 1, and c − γ = 1,

where c is the regression coefficient on spot market returns and γ is the regression coefficient

on futures market returns. However, futures prices move four to five times more than predicted

by futures converging to zero, while spot prices move in entirely the opposite direction.22 The

evidence points to futures prices and spot prices responding to forces beyond convergence.

In Internet Appendix Figure IA.7, we show t-statistics from predictive time- series regres-

sions of weekly futures and spot returns on the lagged basis for each individual index separately.

The figure shows that the relationship between the basis and subsequent futures and spot market

returns is negative for 14 of the 18 indices in our sample, providing evidence that the negative

predictability of the basis occurs in the majority of indices in our sample.

To shed additional light on the mechanism, we test the corollary to the third prediction,

which holds that dealers’ futures positions should positively predict subsequent futures and

spot returns, and that customers’ futures positions should negatively predict subsequent futures

and spot returns. Using CFTC investor net positions data, we run the panel regressions

rfuti,t+1 = ai + bt+1 + gF c
i,t + ϵi,t+1 (16)

rspoti,t+1 − rf,t = αi + βt+1 + γF c
i,t + ηi,t+1, (17)

where F c
i,t is the net positions of investor category c in index i at time t. Investor net positions

are normalized to have zero mean and unit standard deviation (returns are in bps). Standard

errors are clustered by entity and time.

Panel B of Table V reports the results with time and entity fixed effects. A one-standard-

22We note that c − γ is not exactly equal to one in the regressions, as we may expect. This is due to a slight

mismatch between how futures returns are measured (using daily settlement prices for the nearest-to-expiration

futures contract) and how the basis is measured (a linear combination of the basis computed using average minute-

by-minute prices for the nearest- and second-nearest-to-expiration contracts when the nearest contract is within

10 days to expiration).

30



deviation change in weekly futures dealer positions corresponds to a 6.1 bp higher weekly

futures markets return (t-statistic 3.52) and a 5.7 bp higher weekly spot market return (t-statistic

3.48) in the following week. Since the average weekly futures return for U.S. indices is about

20 bps, these numbers suggest that the relationship between dealer positions and returns is

substantial. A one-standard-deviation change in institutional investor positions corresponds

to a 3.6 bp lower weekly futures return (t-statistic −1.72) and a 3.2 bp lower weekly spot

return (t-statistic −1.58) in the following week. A one-standard-deviation change in hedge

fund positioning corresponds to a 6.7 bp lower weekly futures return (t-statistic −3.45) and a

6.5 bp lower weekly spot return (t-statistic −3.30) in the following week.23

The regression results provide further evidence that the basis captures liquidity demand for

equity index exposure that is reflected in futures and spot markets, with return predictability

reflecting compensation to liquidity providers for taking positions opposite customer demand.

–Table V here–

D. Quantifying the Basis Return Predictability with Trading Strategies

To quantify and better understand the return predictability of the basis suggested by Predic-

tion 3, we construct trading strategies that take positions in each index based on its future-spot

basis.

D.1. Cross-Sectional LMH Liquidity Demand Strategy

We construct a low-minus-high (LMH) liquidity demand trading strategy that goes long

equity indices in which futures are “cheap” relative to their hypothetical spot-implied price and

23Due to the fixed effects, the results do not mean that hedge funds lose money on their futures positions. Hedge

funds often trade on time-series momentum, which is highly profitable (Moskowitz, Ooi, and Pedersen (2012)).

Rather, the results are consistent with the returns of an equity index being lower when hedge funds demand more

futures on the index.

31



short equity indices in which futures are “expensive” relative to their hypothetical spot-implied

price. We construct two versions of the strategy, one that trades exclusively in futures and

one that trades exclusively in the spot market. Positive returns to the strategies would suggest

that indices in which futures that appear cheap outperform indices in which futures appear

expensive.

We follow Koijen, Moskowitz, Pedersen, and Vrugt (2018) and form portfolios of indices

weighted in proportion to the cross-sectional rank of their basis. The weight on index i at time

t, and the portfolio returns in period t+ 1, are given by

wi
t = κt

(
rank

(
−X i

t

)
− Nt + 1

2

)
(18)

RLD,t+1 =
Nt∑
i=1

wi
tr̃i,t+1, (19)

where Nt is the number of available indices at time t, the scalar κt ensures that the sum of

the long and short positions equals $1 and $−1, respectively, X i
t is the signal used to form the

portfolio, and RLD,t+1 is the return at time t+1 of the LMH liquidity demand portfolio.24 In the

main specification, X i
t is the one-day lagged basis for index i at time t, and we form portfolios

on Friday of each week. In additional robustness tests, we further lag values of the basis to sort

portfolios, and use different portfolio rebalancing frequencies.25

24This is similar to the weighting scheme employed by Asness, Moskowitz, and Pedersen (2013), who show

that the resulting portfolios are highly correlated with other zero-cost portfolios that use different weights.

25In Section V of the Internet Appendix, we construct alternative global equity LMH strategies excluding the

U.S. indices. The resulting portfolios are highly correlated with our baseline specification and realize similar

performance.
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D.2. Time-Series LMH Liquidity Demand Strategy

To study the time-series return predictability of the basis, we construct a timing strategy

where the weight of security i is given by

wi,t = zt
(
−2I

(
Xi,t − X̄ > 0

)
− 1
)
. (20)

In Equation (20), X t
i is the basis of asset i, X̄i is the mean of that basis (estimated using

information up to time t − 1), and I(X i
t − X̄i > 0) is an indicator function that equals one if

X i
t > X̄i. We set zt such that we have $2 of exposure in each period, although instead of being

$1 long and $1 short at all times, the strategy typically takes aggregate long or aggregate short

positions.

D.3. LMH Liquidity Demand Trading Strategy Returns

Table VI reports the annualized mean, standard deviation, skewness, excess kurtosis, and

Sharpe ratio of the returns to the cross-sectional LMH portfolio (“LMH Liquidity Demand

XS”) and the timing portfolio (“LMH Liquidity Demand TS”). Panel A reports statistics for the

main specification, which are weekly rebalanced strategies, and Panel B for strategies that are

rebalanced monthly. For comparison, we also report statistics for cross-sectional and timing

reversal strategies, common proxies for the returns to liquidity provision (Jegadeesh (1990),

Nagel (2012), and Drechsler, Moreira, and Savov (2021)). Panel A reports statistics for one-

week reversal strategies rebalanced at the end of each week, and Panel B for one-month reversal

strategies rebalanced at the end of each month.

Panel A shows that the annualized Sharpe ratio of the cross-sectional LMH portfolio is

0.86 in the futures market and 0.62 in the spot market, while the annualized Sharpe ratio of the

timing portfolio is 0.69 in the futures market and 0.54 in the spot market. The performance

of the strategies is of similar magnitude as the performance of the one-week reversal strategies
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formed in our sample. We find no evidence of negative skewness for the strategies, but some

evidence of excess kurtosis.

Panel B shows that the performance of the LMH liquidity demand strategies persists, even

at lower rebalancing frequencies. The Sharpe ratio of the monthly rebalanced cross-sectional

LMH portfolio is 0.84 when implemented in the futures market and 0.72 when implemented

in the spot market. The monthly-rebalanced timing LMH portfolio has a Sharpe ratio of 0.37

when implemented in the futures market and 0.30 when implemented in the spot market. These

results stand in contrast to the more substantial decay in the performance of reversal strate-

gies as we move to the monthly frequency. The cross-sectional reversal strategies rebalanced

monthly have lower Sharpe ratios of 0.50 (futures) and 0.45 (spot). The monthly timing re-

versal strategies have Sharpe ratios of −0.22 (futures) and −0.24 (spot), consistent with equity

indices exhibiting one-month continuation in the time series, as documented by Moskowitz,

Ooi, and Pedersen (2012). The evidence suggests that the LMH strategies capture a distinct

dimension of liquidity demand and supply not captured by short-term past price changes.

The returns to the trading strategies are substantial when implemented in the spot market,

though they do not earn the same basis profitability as the strategies implemented in the futures

market. With weekly rebalancing, in the cross-sectional strategy, the annualized average return

of the strategy trading in futures (spot) is 7.21% (5.22%) per year. The difference between the

two, 1.99%, is the amount that can be attributed to profitability accrued from basis convergence.

The results suggest that the vast majority of the profitability of the LMH liquidity demand

strategy returns occur in the spot market.

–Table VI here–

Figure 4 plots the cumulative returns of the LMH trading strategies. The strategies earn

consistently strong returns in the first part of the sample (January 2000 through December

2006) as well as the second part (January 2007 through December 2017). In the first part of

the sample, the LMH cross-sectional strategy earns a Sharpe ratio of 0.80 (0.50) in the futures
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(spot) market and the LMH timing strategy earns a Sharpe ratio of 0.69 (0.45) in the futures

(spot) market. In the second part of the sample, the cross-sectional strategy earns a Sharpe ratio

of 0.91 (0.74) in the futures (spot) market and the timing strategy earns a Sharpe ratio of 0.70

(0.60) in the futures (spot) market.

–Figure 4 here–

E. Further Analysis of Trading Strategies

The trading strategies provide strong evidence consistent with the third prediction of the

model, that the basis negatively predicts returns in futures and spot markets. In Section VII of

the Internet Appendix, we further examine the basis trading strategies to better understand the

return predictability of the basis. The returns of the strategies are not explained by exposure

to other well-known return predictors (e.g., value, momentum, carry, time-series momentum,

and short-term reversals). We also find that the strategies’ returns are driven in particular by

time-varying (rather than static) variation in the basis across indices and idiosyncratic (rather

than systematic) variation in the basis over time. The holding-period returns of the strategies are

concentrated within a month, consistent with the degree of persistence of the basis and in dealer

net positions in futures. Lastly, somewhat surprisingly, the trading strategies are only weakly

exposed to funding liquidity and volatility shocks. This result is explained in prt by the fact

that hedge funds appear to play the role of liquidity demanders rather than liquidity suppliers in

futures markets, as captured by the basis, and they reduce their equity index futures positions

when funding conditions deteriorate.

IV. Futures and Spot Market Liquidity Demand

A key component of our story is that liquidity demand in futures markets, as captured by

the basis, is highly correlated with demand faced by liquidity providers in the spot market. We
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more closely examine this assumption by studying the relationship between the basis, futures

positions, and flows into funds that are benchmarked to the U.S. indices in our sample.26

We obtain data on daily net flows and fund sizes for U.S. open-end funds and ETFs for

the period 2007 to 2017 from Morningstar Direct, for all funds for which data are available at

a daily frequency. We construct a weekly proxy for flow-based demand for each of the five

U.S. indices in our sample as the sum of all weekly net flows into funds that list the index

as a benchmark on their prospectus, normalized by the lagged sum of the net assets of those

funds. The logic behind this measure is that open-end funds and ETFs purchase shares in their

benchmark index in response to flows, corresponding to spot market liquidity demand for the

index.

We run panel regressions of weekly changes in the five-day rolling average of the basis on

the flow-driven demand measure, which we standardize to have mean zero and unit standard

deviation. A positive coefficient corresponds to the basis of an index increasing in weeks in

which that index receives inflows. Panel A of Table VII reports the results, which are all

statistically significant, with t-statistics ranging from 4.08 to 4.22. A one-standard-deviation

change in weekly flows corresponds to a 1.9 to 2.7 bp increase in the weekly basis (which

has a standard deviation of 30 bps). This relationship is consistent with spot market liquidity

providers facing direct spot market demand at the same time that customers demand futures, as

reflected in the basis.

We next run panel regressions of the weekly changes in futures positions on the flow-driven

demand measure. Panel B of Table VII reports results of regressions in which the dependent

variable is the change in dealer net positions. As before, we standardize the position variables to

have zero mean and unit standard deviation, which implies that the coefficients can be broadly

26Other work documents the effects that flow-induced price pressure may have on individual stock returns,

for example, Coval and Stafford (2007), Lou (2012), and Khan, Kogan, and Serafeim (2012). Related, Brown,

Davies, and Ringgenberg (2021) explore mispricing from nonfundamental demand in ETFs.
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interpreted as correlations. The coefficients range from −0.15 (t-statistic -3.85) with time and

entity fixed effects to −0.25 (t-statistic -4.93) with time fixed effects only. The results suggest

a strong negative relationship between dealer positions and mutual fund flows, indicating that

the demand that dealers face in the futures market is highly correlated with flows into ETFs and

open-end funds. Panels C and D report results from panel regressions in which the dependent

variables are changes in hedge fund and institutional investor net positions. The relationship

between weekly flows and changes in the positions of hedge funds is highly significant, with

the coefficients ranging from 0.15 (t-statistic 3.94) with time fixed effects to 0.24 (t-statistic

7.43) with entity fixed effects. None of the regression coefficients on the flow-based measure

is statistically significant in the institutional investor position regressions, although the coef-

ficients are consistently positive. The evidence suggests that our flow-based demand variable

captures demand for futures from hedge funds and other levered investors, but not necessar-

ily demand from institutional investors. The institutional investor category is defined by the

CFTC to include pension funds, endowments, and insurance companies, whose liquidity needs

in futures may be different.

The relationship we identify between the basis, investor positions, and fund flows can op-

erate through two channels, both of which are consistent with liquidity demand. Under the first

channel, which we believe is likely the dominant one, hedge funds simultaneously use futures,

ETFs, and index funds as vehicles to rebalance their equity index exposure. The use of all three

types of instruments results in common demand that is reflected in fund flows, the basis, and

hedge fund futures positions, consistent with the mechanism captured by our model. Under the

second channel, open-end funds and ETFs facing inflows themselves use futures to rebalance

their market exposure, although this effect is likely considerably smaller.

The relationship between flows, the basis, and investor positions supports the assumptions

of our model, and suggests that demand for futures is correlated with direct demand for equity

index exposure faced by liquidity providers in the spot market. The evidence thus supports the
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view that demand for equity index exposure plays an important role in the basis and its return

predictability.

–Table VII here–

V. Dealer Costs and the Futures-Cash Basis

In this section, we more closely study dealer costs, which also play a crucial role in our

story, as they enable futures demand to show up in the futures-cash basis. First, we analyze

the relationship between the futures-cash basis and the pricing of total return swaps, which

provide a direct measure of the all-in costs that dealers in equity index markets face to provide

leverage. Second, we study a mechanism through which dealers’ marginal costs to meet futures

demand for an index are increasing in demand for that index through the equity repo market.

Third, we focus on the cost of balance sheet space by relating the futures-cash basis to other

near-arbitrages that are also affected by the cost of balance sheet space.

A. Dealer Costs from Equity Total Return Swaps

We argue that the futures-cash basis is driven by the costs that dealers face to meet futures

demand. We provide additional support for this story by analyzing indicative midprice quotes

of three-month maturity equity index total return swaps from 2011 through the end of our

sample for a subset of the indices in our sample. We obtain these data from an anonymous

active market participant.

An equity total returns swap (TRS) is an agreement between two parties whereby one party

receives the total returns of an equity index (which includes price changes and dividends) and

pays a floating amount that is a benchmark interest rate plus a spread. TRS prices are quoted in

terms of this spread. Because total returns include dividends, total return swaps do not have any

dividend risk (unlike the futures-cash basis). TRS prices therefore provide a direct measure of
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the costs that dealers face to provide leveraged equity exposure in an equity index, including the

cost of balance sheet space and the cost of financing positions in the index in the spot market.

This feature of total return swaps makes them especially useful for dealers and other market

participants to share financing costs and risks associated with their equity index derivatives

businesses.27

Panel A of Table VIII reports the average and average absolute TRS quotes, as well as the

same values for the futures-cash basis for the time period in which we have TRS pricing. The

average absolute TRS quote is 35 bps versus 37 bps for the futures-cash basis, indicating that

the magnitude of the quotes is similar to the magnitude of the basis. The average TRS quote

is 28 bps versus 15 bps for the future-cash basis, indicating that the TRS quotes are slightly

more positive than the basis on average. The panel also reports daily correlations between the

TRS quotes and our measured basis values. The average correlation across indices is 0.49, with

correlations as high as 0.73 (the S&P 500 and NASDAQ indices) and 0.77 (the DJIA index).

We do not expect TRS quotes to be perfectly aligned with the basis for a variety of reasons,

which include the maturity mismatch between the swaps and futures that we use to measure

the basis, the fact that the basis captures traded market prices averaged over the course of a day

versus TRS prices, which are indicative quotes to execute large notional trades provided by a

single market participant in an over-the-counter market, and potential measurement differences

stemming from treatment of dividends in the construction of the basis. The strong degree of

commonality between the TRS quotes and the basis indicates that the basis captures the same

costs associated with leveraged equity index exposure that are captured by TRS quotes capture.

Panel B of Table VIII reports Sharpe ratios for weekly rebalanced LMH cross-sectional

27One particular use of total return swaps is to hedge financing risks stemming from exotic derivatives busi-

nesses. Dealers often trade in exotic equity index derivatives with maturities longer than those of listed futures

(e.g., 5 to 10 years), which makes swaps useful. While total return swaps have traded primarily over-the-counter,

in recent years listed total return futures for various maturities have begun to trade for U.S. and European indices.
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and timing strategies formed using TRS quotes as the sorting variable. For comparison, the

panel also reports the same statistics for the LMH trading strategies sorted on the basis, formed

over the same period using indices for which we have TRS quote data. The panel indicates

that TRS quotes capture most of the return predictability associated with the basis. Trading

strategy performance is nearly identical for timing strategies, while the basis appears to have

slightly stronger cross-sectional return predictability. Given TRS quotes directly proxy for

dealer financing costs for an equity index, the evidence supports the role that financing frictions

play in giving rise to the basis and its return predictability, and helps mitigate concerns about

other factors driving our results.

–Table VIII here–

B. Equity Repo and Securities Lending

Our model assumes that futures dealers face increasing marginal costs to intermediate ad-

ditional futures demand in an index. Evidence justifying this assumption is that dealers prefer

to obtain financing by using their hedge positions as collateral to borrow cash via repurchase

agreements, or, alternatively, prefer to lend shares in their hedge positions in exchange for cash.

The former is referred to as equity repo, while the latter is referred to as securities lending. The

two are tightly linked. When dealers face additional long futures demand, these financing trans-

actions lead them to increase the supply of shares available to borrow for an index. Holding

fixed demand to borrow shares in the index, this corresponds to decreased interest benefits (a

higher repo rate) from using the shares as collateral. Note that a primary purpose of securities

borrowing is for shorting – if shorting demand in the spot market increases with short futures

demand (and decreases with long futures demand), the effect that we describe is stronger. The

behavior of equity repo rates is one mechanism through which marginal dealer financing costs

are increasing in the amount of futures demand being intermediated.

The use of equity repo by dealers means that the benchmark financing rate used to price
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futures should be an equity repo rate, akin to the use of Treasury repo rates in bond futures

pricing.28 As a result, practitioners occasionally refer to the futures-cash basis in equity index

futures, as well as the spread in total return swaps, as the implied repo rate.29 However, un-

like for cash bonds, historical data on the true “repo rates” for equity indices are not readily

available. Accordingly, we are only able to construct imperfect proxies using data on average

lending fees in securities lending markets. Importantly for our story, however, the equity repo

rate for an index decreases as futures demand for that index increases, corresponding to the

increased supply of securities for borrowing provided by dealers.

We use the Markit Securities Finance (MSF) Buy Side Institutional data set, which contains

daily data on stock loans aggregated from a variety of market participants. From May 2007

onwards, the MSF data set provides data on the security lending fees for stocks. Average

lending fees are a proxy for the marginal benefit from lending shares, which is directly related

to equity repo rates and dealer financing costs. Using the data, we construct an index-level

measure of security lending fees at each point in time by using the weight of each security in

each index and data on security lending fees. We discuss the data and outline the procedure for

this construction in Section VIII of the Internet Appendix.

Panel A of Table IX reports regression results for regressions of the futures-cash basis and

TRS quotes on index security lending fees. Observations are five-day rolling averages sam-

pled weekly, and standard errors are clustered by entity and time. Given that higher securities

lending fees make it cheaper for dealers to provide long leverage, we expect the coefficients

in the regressions to have negative signs. Focusing on regressions in which the basis is the

independent variable, the coefficients in the regressions are all negative and range from −0.13

28Calculating the implied financing in bond futures involves the additional complication that bond futures have

embedded delivery options, as market participants can choose which bond to deliver and the timing of delivery.

This optionality is not present in the cash-settled equity index futures we study.

29For an example, see Heath (2017).
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(with time and entity fixed effects) to −0.50 (with no fixed effect). The regressions suggest

that securities lending fees have some explanatory power for time-series variation in the basis

(t-statistics −2.07 and −2.23 with no fixed effects and with entity fixed effects, respectively),

but have more limited ability to explain variation in the basis across indices. Focusing on

regressions in which TRS quotes are the independent variables, the coefficients range from

−0.15 (with time and entity fixed effects) to −0.24 (with entity fixed effects). Here, lending

fees have slightly stronger explanatory power, with t-statistics greater 2 in all specifications ex-

cept that with entity fixed effects (t-statistic −1.78), indicating that lending fees capture some

cross-sectional and time-series variation in TRS quotes.

Panel B of Table IX reports regression results for dealer futures positions on five-day rolling

average index security lending fees. Observations are sampled weekly and standard errors are

clustered by entity and time. Dealer futures positions are standardized to have zero mean

and unit standard deviation and security lending fees are in percentage points. Regression

coefficients range from 0.30 (with time and entity fixed effects) to 2.50 (with no fixed effects),

indicating that a 10 bp increase in the security lending fee corresponds to a 0.03 to 0.25 standard

deviation increase in dealer positions, where t-statistics are equal to 3.78, 4.02, and 2.71 with

no fixed effects, time fixed effects, and entity fixed effects, respectively, but fall to 0.41 when

including time and entity fixed effects. The regression results indicate that securities lending

fees tend to be higher in indices and time periods in which dealers face less long demand,

consistent with the mechanism we propose.

Our results suggest a relationship between the basis, futures positions, and security lending

fees consistent with securities lending/equity repo serving as a strategy for dealers to obtain

financing for their hedge positions. While there is a relationship in the data, there is also sub-

stantial variation in the basis and in dealer futures positions not captured by securities lending

fees. Hence, other factors may help explain why dealer financing costs for an index increase
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with demand for that index, for example, risk management and trading position limits.30

–Table IX here–

C. Bank Balance Sheet Costs and Other Pricing Deviations

Another important component of the basis in our model is Ct, which dealer financing costs

associated balance sheet space. The term Ct is high in periods when dealers face high bal-

ance sheet costs (e.g., because of leverage constraints) and low in periods when they are less

constrained. Given many of the same intermediaries operate across asset classes, in periods

in which Ct is high, we expect large pricing deviations to occur across asset classes. Here,

we proxy for time-variation in Ct by focusing on the magnitude of pricing deviations across

different markets, which provides color on the role of financing costs, as well as novel evidence

for the relationship between the basis and pricing deviations in other asset classes.31

We construct two arbitrage indices to proxy for Ct. The first, which we call the equity

arbitrage index, is constructed by taking the average absolute value of the basis for the non-

U.S. equity indices in our sample at each point in time and standardizing the resulting series

to have zero mean and unit standard deviation in our sample. The second is a fixed-income

arbitrage index, which is constructed by taking the average of two series, each standardized to

have zero mean and unit standard deviation in our sample: i) the average magnitude of three-

month LIBOR-based deviations from covered interest rate parity for G10 currencies versus

the U.S. Dollar, and ii) the ‘Noise’ measure of Hu, Pan, and Wang (2013), which captures

30For many large-cap stocks (e.g., those in the S&P 500), shares are easy to locate and borrow, and securities

lending fees are low and do not vary substantially. The equity repo mechanism that we discuss here is likely to be

important for a subset of the indices that we study, while for indices like the S&P 500, other factors likely play a

more important role in explaining why dealer financing costs increase with demand.

31Other work shows that the magnitude of pricing deviations can capture intermediary balance sheet costs (e.g.,

Du, Hébert, and Huber (2021)). Our evidence is unique in illustrating the interactions between balance sheet costs,

derivatives demand, and dealers’ positions.
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pricing deviations between one- to 10-year U.S. Treasury yields and a fitted yield curve.32 We

restandardize the fixed income arbitrage index to have zero mean and unit standard deviation

in our sample.

We regress the futures-cash basis on the arbitrage indices, dealer net positions, and dealer

net positions interacted with each arbitrage index. The coefficient of interest is the interaction

term, which is the incremental slope of the relationship between dealer positions and the ba-

sis corresponding to a one-standard-deviation increase in the arbitrage index. Because dealer

positions are negatively related to the basis, we expect the interaction term to have a negative

sign.

The regression results are reported in Table X. Across all specifications, coefficients on

dealer positions are similar to those coefficients reported in Table III (ranging from approxi-

mately 10 to 29), and are statistically significant at the 5% level. Columns (1) to (4) of the

table report regression results using the equity arbitrage index as the interaction variable. In-

teraction coefficients range from −7.1 (with time and entity fixed effects) to −9.0 (with no

fixed effects). Columns (4) through (8) report results using the fixed income arbitrage index

as the interaction variable. Interaction coefficients range from −8.4 (with time and entity fixed

effects) to −10.8 (with no fixed effects). Columns (9) to (12) report results when both arbitrage

indices are interacted with dealer positions. Interaction coefficients on the equity arbitrage in-

dex range from −5.0 to −6.4, while the interaction coefficients on the fixed income arbitrage

index range from −6.6 to −8.8. The magnitude of the regression coefficients is approximately

33% to 85% of the coefficient on dealer positions, indicating a substantial multiplier effect on

the relationship between the basis and dealer positions. Interestingly, the two arbitrage indices

appear to capture distinct but relevant information for the magnitude of the futures-cash basis in

U.S. indices. In additional, the coefficients on the arbitrage indices themselves are statistically

indistinguishable from zero, indicating as expected that their explanatory power comes from a

32Updated data on the Noise measure come from Jun Pan’s website.
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multiplier on dealer positions.

The regression results suggest that the average magnitude of pricing deviations from both

international markets and other asset classes is useful for understanding the variation in the

futures-cash basis. The basis reflects both the cost of balance sheet space, which is common

to all assets, and asset-specific financing costs related to demand. The magnitude of pricing

deviations across asset classes provides a useful proxy for variation in the cost of balance sheet

space.

–Table X here–

VI. Conclusion

We show that violations of the law of one price convey more than just intermediation costs

– they also provide information about liquidity demand in equity futures markets. Consistent

with this view, we find that the basis between futures and spot prices negatively predicts re-

turns in futures and spot markets in the same direction, distinct from futures market and spot

market prices merely converging. The basis appears to capture futures demand from hedge

funds and institutional investors, with the associated return predictability compensating liquid-

ity providers for meeting this demand. Interestingly, while the properties of futures contracts,

such as their embedded leverage, low transaction costs, and high liquidity, may make them

seemingly ideal instruments for sophisticated traders to trade based on their information, our

results suggest that futures contracts are often used by investors to meet their liquidity demands

for equity market exposure.

Our results highlight the important role that supply and demand imbalances play in giving

rise to violations of the law of one price, which may also be relevant in other asset classes. A

previous version of this paper shows that deviations from covered interest rate parity in cur-

rency markets are related to hedging demand stemming from international capital flows. This
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relationship implies that deviations from covered interest rate parity contain information rele-

vant for exchange rates, a point also made in Liao and Zhang (2020) and Greenwood, Hanson,

Stein, and Sunderam (2022), with the latter also connecting the results to global bond markets.

The supply and demand imbalance captured by the basis also has implications for interpreting

the interest rates embedded in derivatives prices (e.g., as studied by van Binsbergen, Diamond,

and Grotteria (2022)), which we discuss further in Section VI of the Internet Appendix. Our

evidence suggests that in addition to reflecting financial frictions, the demand captured by de-

viations from the law of one price contains additional economic insights.
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Figure 1. Mechanics of futures trading. The figure illustrates the mechanics of liquidity demand for equity index exposure.
Customers demand both futures contracts and cash equities. Futures dealers meet the demand for futures, and hedge their equity
market exposure by buying stocks. Dealers obtain financing for their hedge positions by lending out their stocks in exchange for
cash, which provides a cheaper source of financing than uncollateralized borrowing (see Song (2016) for more discussion). Liquidity
providers in the spot market meet both direct demand for stocks from customers, and hedging demand from futures dealers.
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Figure 2. Cost of carry and the futures-cash basis. The figure plots the cost of carry, the
hypothetical cost of carry, and the futures-cash basis for the S&P 500 index and the Russell
2000 index constructed using equation (8). All values are plotted from January 2015 through
December 2017.
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Figure 3. Net positions from the traders in financial futures report. The plots graph the ratio of the net number of contracts
held by each investor type to the total open interest for a given equity index, as published in the weekly Traders in Financial Futures
Report published by the CFTC. The report has been published in real time from 2010 to 2017, with the CFTC back-filling values
from 2006 to 2010.
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Figure 4. Trading strategy cumulative returns over time. The figure plots the cumulative
returns of the weekly rebalanced LMH trading strategies. The top panel plots the returns of
the cross-sectional LMH strategies, which take positions in indices weighted in proportion to
the cross-sectional rank of their futures-cash basis, taking long positions in indices with more
negative bases and short positions in indices with more positive bases. The bottom panel plots
the returns of the LMH timing strategies, which take long positions in indices that have a more
negative basis than their histories and short positions in indices that have a more positive basis
than their histories. In each panel, the cumulative returns of the strategies implemented in
futures contracts are in blue and the cumulative returns of the strategies implemented in the
spot market are in red.
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Table I
Basis Summary Statistics

The table displays summary statistics for the annualized basis in global equity markets. Panel A reports the
average value of all basis observations in the sample, the average absolute value of all basis values in the sample,
the average of the time-series standard deviation of the basis for each asset in the sample, and the average of the
cross-sectional standard deviation of the basis in each period. Panel B displays the pairwise correlation of the basis
and returns, as well as the pairwise correlation of the three-day rolling average of the basis and returns (“rolling
pairwise”), averaged across all indices in the sample. Panel C displays the pairwise correlation of the basis and
returns, as well as the pairwise correlation of the three-day rolling average of the basis and returns, averaged across
the U.S. indices in the sample.

Panel A: Average Basis Values

Average
Basis

Average
Absolute

Basis

Average Basis
TS-Stdev

Average Basis
XS-Stdev

Jan. 2000-Dec. 2017 -0.83 56.58 91.84 90.39
Jan. 2000-Jun. 2007 -8.15 63.92 94.48 111.05
Jul. 2007-Dec. 2017 3.52 52.22 84.82 75.67

Panel B: Average Pairwise Correlations, All Indices

Basis Returns

Pairwise Rolling Pairwise Pairwise Rolling Pairwise

Jan. 2000-Dec. 2017 0.17 0.19 0.53 0.67
Jan. 2000-Jun. 2007 0.11 0.09 0.48 0.62
Jul. 2007-Dec. 2017 0.22 0.24 0.57 0.70

Panel C: Average Pairwise Correlations, U.S. Indices

Basis Returns

Pairwise Rolling Pairwise Pairwise Rolling Pairwise

Jan. 2000-Dec. 2017 0.57 0.60 0.89 0.89
Jan. 2000-Jun. 2007 0.42 0.37 0.86 0.87
Jul. 2007-Dec. 2017 0.61 0.65 0.91 0.91
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Table II
Correlation of Net Positions by Investor Type

Net position is the ratio of the net number of contracts held by each investor type to the total open interest for a
given equity index, as published in the weekly Traders in Financial Futures Report published by the CFTC. Panel
A reports the correlation of net positions by investor type with other investor types within a given index, averaged
across indices. Each element of Panel A represents the average time-series correlation of net positions across
investor types for each index. Panel B reports the average correlation of net positions for each investor type across
indices. For example, the dealer/dealer component of the table represents the average time-series correlation of
the net positions of dealers across each of the five indices.

Panel A: Correlation of Within-Index Net Positions, Averaged Across Indices

Dealer Institutional Hedge Funds Other

Dealer 1.00 -0.66 -0.68 -0.28
Institutional 1.00 0.12 0.11
Hedge Funds 1.00 0.05
Other 1.00

Panel B: Correlation of Cross-Index Net Positions, Averaged Across Indices

Dealer Institutional Hedge Funds Other

Dealer 0.36 -0.20 -0.32 -0.07
Institutional 0.11 0.13 0.03
Hedge Funds 0.39 0.11
Other 0.01
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Table III
Regression of the Futures-Cash Basis on Investor Net Positions in Futures

Net position is the ratio of the net number of contracts held by each investor type to the total open interest for
a given equity index, as published in the weekly Traders in Financial Futures Report published by the CFTC.
Panel A reports results of a regression of the futures-spot basis on standardized dealer net positions. Panel B
reports results of a regression of the futures-cash basis on standardized institutional, levered, and other positions.
The futures-cash basis is an annualized rate. Standard errors are clustered by index and time, with t-statistics in
parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(1) (2) (3) (4) (5) (6) (7) (8)

Dealer -28.87∗∗ -22.20∗∗ -25.50∗∗ -10.00∗∗

(-3.74) (-4.22) (-3.26) (-2.87)

Institutional 20.63∗∗ 12.60∗∗ 18.00∗ 6.74∗∗∗

(3.11) (3.99) (2.73) (6.24)

Hedge Funds 19.74∗∗ 18.64∗∗ 14.81∗ 3.82
(3.68) (4.10) (2.57) (0.73)

Other 1.11 1.03 7.16 5.41∗∗

(0.37) (0.41) (1.87) (2.90)

R2 0.26 0.32 0.62 0.69 0.27 0.32 0.62 0.70
Observations 2874 2874 2874 2874 2874 2874 2874 2874
Time FE No No Yes Yes No No Yes Yes
Entity FE No Yes No Yes No Yes No Yes
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Table IV
Contemporaneous Relationship Between the Basis and Returns

The table reports results from regressions of the form

rfuti,t+1 = ai + bt+1 + c(∆xi,t+1) + ϵi,t+1

rspoti,t+1 − rf,t = αi + βt+1 + γ(∆xi,t+1) + ηi,t+1,

where ri,t+1 is the return of asset i from period t to period t+ 1, ai is the asset-specific intercept (or fixed effect),
bt+1 and βt+1 are time fixed effects, ∆xi,t+1 is the change in the variable x for index i from t to t+ 1, and c and
γ are the coefficients of interest that measure the contemporaneous relationship between the independent variable
and market returns. Panel A reports results for regressions in which the independent variable is the futures-cash
basis. Panel B reports the results for regressions in which the independent variable is the net positions of investor
categories. The regression in Panel B contains only the U.S. equity indices in the sample. Returns in both sets of
regressions are scaled to be in bps. Independent variables in the regressions are scaled to have zero mean and unit
standard deviation. Observations are sampled weekly. Standard errors are clustered by time and entity. t-statistics
are reported in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Panel A: Contemporaneous Relationship Between Returns and The Basis

Futures Market Returns Spot Market Returns

(1) (2) (3) (4) (5) (6) (7) (8)

∆Basist+1 47.41∗∗∗ 17.95∗∗∗ 47.41∗∗∗ 17.95∗∗∗ 43.20∗∗∗ 13.68∗∗∗ 43.20∗∗∗ 13.68∗∗∗

(5.25) (5.39) (5.25) (5.39) (4.99) (3.91) (4.99) (3.91)

R2 0.03 0.71 0.03 0.71 0.02 0.71 0.02 0.71
Observations 15522 15522 15522 15522 15522 15522 15522 15522
Time FE No Yes No Yes No Yes Yes Yes
Entity FE No No Yes Yes No No Yes Yes

Panel B: Contemporaneous Relationship Between Returns and Futures Positions

Futures Market Returns Spot Market Returns

(1) (2) (3) (4) (5) (6) (7) (8)

∆FDealer
t+1 -14.59∗∗ -13.76∗∗

(-3.16) (-3.08)

∆F Institutional
t+1 15.11∗∗∗ 14.27∗∗∗

(7.14) (6.99)

∆FHedge Fund
t+1 6.97 6.56

(1.54) (1.45)

∆FOther
t+1 -0.55 -0.37

(-0.17) (-0.12)

R2 0.91 0.91 0.91 0.91 0.91 0.92 0.91 0.91
Observations 2852 2852 2852 2852 2852 2852.00 2852 2852
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Entity FE Yes Yes Yes Yes Yes Yes Yes Yes
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Table V
Basis Return Predictability

The table reports results from a set of panel regressions of the form

rfuti,t+1 = ai + bt + cxi,t + ϵi,t+1

rspoti,t+1 − rf,t = αi + bt + γxi,t + ηi,t+1,

where rit:t+1 is the return of asset i from period t to period t + 1, xi,t is the independent variable in market i
measured in period t, ai is the asset-specific intercept (or fixed effect), bt are time fixed effects, and c and γ are
the coefficients of interest that measure the predictive relationship between the independent variable and equity
market returns. Panel A reports results for regressions in which the independent variable is the futures-cash basis,
scaled to be in bps per week. Panel B reports the results for regressions in which the independent variable is the
net position of different investor categories, scaled to have zero mean and unit standard deviation. Returns in both
sets of regressions are scaled to be in bps. The regression in Panel B contains only the U.S. equity indices in
the sample. Observations are sampled weekly. Standard errors are clustered by time and entity. t-statistics are
reported in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Panel A: Return Predictability of the Basis

Futures Market Returns Spot Market Returns

(1) (2) (3) (4) (5) (6) (7) (8)

Basist−1 -5.09∗∗∗ -3.85∗∗∗ -5.06∗∗∗ -3.80∗∗∗ -3.54∗∗ -2.28∗∗ -3.44∗∗ -2.15∗∗

(-3.42) (-4.30) (-3.17) (-4.21) (-2.50) (-2.32) (-2.26) (-2.14)

R2 0.00 0.71 0.00 0.71 0.00 0.71 0.00 0.71
Observations 15649 15649 15649 15649 15649 15649 15649 15649
Time FE No Yes No Yes No Yes No Yes
Entity FE No No Yes Yes No No Yes Yes

Panel B: Return Predictability of Investor Net Futures Positioning

Futures Market Returns Spot Market Returns

(1) (2) (3) (4) (5) (6) (7) (8)

FDealer
t−1 6.11∗∗ 5.66∗∗

(3.52) (3.48)

F Institutional
t−1 -3.59 -3.24

(-1.72) (-1.58)

FHedge Fund
t−1 -6.72∗∗ -6.50∗∗

(-3.45) (-3.30)

FOther
t−1 1.93 2.07

(1.17) (1.29)

R2 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
Observations 2879 2879 2879 2879 2879 2879 2879 2879
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Entity FE Yes Yes Yes Yes Yes Yes Yes Yes
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Table VI
LMH Liquidity Demand Returns

The table reports the weekly mean excess return, annualized mean excess return, annualized standard deviation, skewness of returns, kurtosis of returns, and
annualized Sharpe ratio of the LMH liquidity demand strategy returns. Panel A displays statistics for weekly rebalanced portfolios and Panel B displays
statistics for monthly rebalanced portfolios. The table displays statistics corresponding to the cross-sectional LMH liquidity demand portfolios (“LMH
Liquidity Demand XS”) and the LMH liquidity demand timing portfolios (“LMH Liquidity Demand TS”), implemented via futures contracts and in the
spot market. Panel A reports statistics for weekly rebalanced one-week reversal strategies (cross-sectional and time series) and Panel B reports statistics for
one-month reversal strategies (cross-sectional and time series), all formed using the global equity indices in the sample.

Panel A: Weekly Rebalanced Strategies

Weekly Mean Annualized Mean
Annualized

Standard Deviation Skewness Kurtosis
Annualized

Sharpe Ratio

Futures Returns LMH Liquidity Demand XS 0.14% 7.21% 8.40% 0.53 4.00 0.86
LMH Liquidity Demand TS 0.29% 15.10% 21.79% 0.60 4.31 0.69

Spot Returns LMH Liquidity Demand XS 0.10% 5.22% 8.36% 0.17 3.71 0.62
LMH Liquidity Demand TS 0.22% 11.65% 21.48% 0.43 3.99 0.54

Futures Returns 1-Week Reversal XS 0.16% 8.07% 10.41% 0.62 3.36 0.78
1-Week Reversal TS 0.33% 17.30% 32.12% -0.43 9.14 0.54

Spot Returns 1-Week Reversal XS 0.15% 7.60% 10.45% 0.64 3.61 0.73
1-Week Reversal TS 0.33% 16.93% 31.94% -0.38 8.71 0.53

Panel B: Monthly Rebalanced Strategies

Weekly Mean Annualized Mean
Annualized

Standard Deviation Skewness Kurtosis
Annualized

Sharpe Ratio

Futures Returns LMH Liquidity Demand XS 0.49% 5.84% 6.97% 0.45 2.34 0.84
LMH Liquidity Demand TS 0.53% 6.36% 17.06% 0.27 1.36 0.37

Spot Returns LMH Liquidity Demand XS 0.42% 5.01% 7.01% 0.51 2.60 0.72
LMH Liquidity Demand TS 0.43% 5.19% 17.08% 0.27 1.29 0.30

Futures Returns 1-Month Reversal XS 0.35% 4.25% 8.54% 0.43 2.70 0.50
1-Month Reversal TS -0.53% -6.32% 28.44% -0.16 2.35 -0.22

Spot Returns 1-Month Reversal XS 0.32% 3.89% 8.58% 0.52 3.14 0.45
1-Month Reversal TS -0.56% -6.70% 28.24% -0.13 2.25 -0.24
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Table VII
Fund Flows, the Basis, and Investor Positions

The table reports statistics from panel regressions in which the dependent variable is the weekly flow into mutual funds and ETFs that list a given index as their
benchmark. Panel A reports results from regressions in which the dependent variable is the one-week change in the five-day rolling average of the basis. Panel
B reports results from regressions in which the dependent variable is the change in net positions of futures dealers. Panel C reports results from regressions in
which the dependent variable is the change in net positioning of hedge funds. Panel D reports results from regressions in which the dependent variable is the
change net positioning of institutional investors. All variables except the basis are standardized to have zero mean and unit standard deviation. t-statistics are
reported in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Panel A: The Basis and Flows

(1) (2) (3) (4)

Weekly Flows 2.69∗∗ 2.70∗∗ 1.86∗∗ 1.86∗∗

(4.08) (4.10) (4.22) (4.22)

R2 0.01 0.01 0.45 0.45
Observations 2812 2812 2812 2812
Time FE No No Yes Yes
Entity FE No Yes No Yes

Panel B: Dealer Positions and Flows

(1) (2) (3) (4)

Weekly Flows -0.25∗∗∗ -0.25∗∗∗ -0.15∗∗ -0.15∗∗

(-4.93) (-4.91) (-3.90) (-3.85)

R2 0.04 0.04 0.41 0.41
Observations 2713 2713 2713 2713
Time FE No No Yes Yes
Entity FE No Yes No Yes

Panel C: Hedge Fund Positions and Flows

(1) (2) (3) (4)

Weekly Flows 0.21∗∗∗ 0.21∗∗∗ 0.15∗∗ 0.15∗∗

(7.38) (7.43) (3.94) (3.95)

R2 0.03 0.03 0.35 0.35
Observations 2713 2713 2713 2713
Time FE No No Yes Yes
Entity FE No Yes No Yes

Panel D: Institutional Investors and Flows

(1) (2) (3) (4)

Weekly Flows 0.10 0.10 0.00 0.00
(1.32) (1.32) (0.13) (0.13)

R2 0.01 0.01 0.41 0.41
Observations 2713 2713 2713 2713
Time FE No No Yes Yes
Entity FE No Yes No Yes
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Table VIII
Total Return Swaps and the Futures-Cash Basis

The table reports statistics on indicative mid quotes for three-month term equity index total return swaps (TRS).
The quotes are provided as spreads relative to benchmark interest rates, in annualized bps. Panel A reports the
average value and average magnitude of daily TRS quotes, as well as the same values estimated for the futures-
cash basis. The table also reports daily time-series corelations between the futures-cash basis and the TRS quotes,
as well as the start date for which we have pricing data available. Panel B reports annualized Sharpe ratios for
weekly rebalanced LMH cross-sectional and timing trading strategies formed using TRS quotes and the basis,
restricting the sample to indices and periods for which the TRS data are available.

Panel A: Comparison Between TRS Quotes and Bases

Start Date
Average Value Average Magnitude

Correlation
TRS Basis TRS Basis

AU 4/29/2016 34 29 37 49 0.48
BD 5/3/2011 22 8 34 32 0.67
CN 4/29/2016 26 -10 32 30 0.33
DJIA 5/3/2011 34 20 35 25 0.77
ES 5/3/2011 38 31 48 64 0.14
EUROSTOXX 5/3/2011 35 21 39 37 0.60
FR 5/3/2011 18 13 24 35 0.39
IT 5/3/2011 33 21 38 44 0.41
JP 5/6/2011 25 9 33 40 0.52
NASDAQ 5/3/2011 39 21 36 26 0.73
UK 5/3/2011 32 18 32 24 0.36
U.S. 5/3/2011 34 13 34 24 0.74
U.S.RU2K 4/29/2016 -9 -17 23 55 0.31
U.S.SPMC 4/29/2016 37 30 37 34 0.48

Average 28 15 35 37 0.49

Panel B: Trading Strategy Annualized Sharpe Ratios

Cross-Sectional Strategies Time-Series Strategies

Futures Spot Futures Spot

TRS 0.91 0.86 0.54 0.50
Basis 1.08 1.02 0.49 0.44
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Table IX
The Futures-Cash Basis, Securities Lending, and Futures Positions

Panel A reports results from a set of univariate regressions of index security lending fees on the futures-cash
basis and TRS quotes. Observations are rolling five-day averages. Panel B reports results from regressions of the
five-day rolling average of index security lending fees on dealer futures positions. Observations in both panels
are sampled weekly. Standard errors are clustered by index and time. t-statistics are reported in parentheses.∗
p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Panel A: Lending Fees, the Basis, and TRS Pricing

y =Basist y =TRSt

(1) (2) (3) (4) (5) (6) (7) (8)

Fee -0.50∗ -0.38 -0.36∗∗ -0.13 -0.23∗∗ -0.16∗∗ -0.24∗ -0.15∗∗

(-2.07) (-1.42) (-2.23) (-0.84) (-2.97) (-2.45) (-1.78) (-2.19)

R2 0.01 0.18 0.08 0.25 0.03 0.31 0.10 0.38
Observations 10066 10064 10066 10064 3814 3814 3814 3814
Time FE No Yes No Yes No Yes No Yes
Entity FE No No Yes Yes No No Yes Yes

Panel B: Lending Fees and Dealer Positions

(1) (2) (3) (4)

Fee 2.50∗∗ 2.89∗∗ 0.38∗ 0.30
(3.78) (4.02) (2.71) (0.41)

R2 0.22 0.55 0.37 0.67
Observations 2716 2716 2716 2716
Time FE No Yes No Yes
Entity FE No No Yes Yes
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Table X
The Futures-Cash Basis, Dealer Positions, and Other Pricing Deviations

The table reports regressions of the futures cash basis on weekly observations of dealers futures positions for the U.S. indices in our sample, interacted with
an equity arbitrage index (EQ Arb) and a fixed income arbitrage index (FI Arb). The equity arbitrage index is constructed by taking the absolute value of
the futures-cash basis for each non-U.S. index in our sample at each point in time and standardizing the resulting series to have zero mean and unit standard
deviation. The fixed income arbitrage index is constructed using the average magnitude of three-month deviations from covered interest rate parity for G10
currencies versus the U.S. dollar, and the Noise measure of Hu, Pan, and Wang (2013), which captures the pricing deviation of one- to 10-year bonds from a
fitted yield curve. The index is constructed by taking the average of the two series (standardized to have zero mean and unit standard deviation) at each point
in time, with the resulting index restandardized to have unit mean and standard deviation. t-statistics are reported in parentheses.∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

Ct = Equity Arb. Index Ct = FI Arb. Index Ct = Equity Arb. + FI Arb. Index

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Dealer -28.96∗∗ -22.00∗∗ -25.83∗∗ -10.20∗∗ -28.14∗∗ -20.74∗∗ -25.56∗∗ -9.87∗∗ -28.39∗∗ -20.88∗∗ -25.78∗∗ -10.05∗∗

(-3.71) (-4.27) (-3.28) (-3.19) (-3.89) (-4.57) (-3.28) (-2.99) (-3.82) (-4.43) (-3.29) (-3.23)

Dealer× EQ Arb -8.96∗∗∗ -8.90∗∗∗ -7.17∗∗ -7.13∗∗ -6.05∗∗ -6.37∗∗ -4.99∗ -5.30∗∗

(-4.76) (-5.37) (-3.10) (-3.23) (-3.58) (-4.10) (-2.64) (-3.09)

Dealer× FI Arb -10.83∗∗ -9.21∗∗ -9.36∗∗ -8.44∗∗ -8.84∗∗ -7.09∗∗ -7.61∗∗ -6.58∗∗

(-3.89) (-3.50) (-3.76) (-3.37) (-3.90) (-3.48) (-3.61) (-3.34)

EQ Arb -2.62 -3.09 -0.93 -1.12
(-0.90) (-1.12) (-0.35) (-0.45)

FI Arb -3.49 -5.22 -2.81 -4.48
(-0.93) (-1.52) (-0.81) (-1.45)

R2 0.29 0.35 0.63 0.71 0.31 0.36 0.63 0.71 0.32 0.37 0.64 0.71
Observations 2874 2874 2874 2874 2874 2874 2874 2874 2874 2874 2874 2874
Time FE No No Yes Yes No No Yes Yes No No Yes Yes
Entity FE No Yes No Yes No Yes No Yes No Yes No Yes
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