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I. The Futures-Cash Basis Across Indices

A. Summary Statistics

Table IA.I
Starting Dates for Basis Series

Instrument Starting Date

AU Jun-00
BD Jan-00
CN Jan-00
DJIA Apr-02
ES Jan-00
EUROSTOXX Jun-01
FR Jan-00
HK Jan-00
IT Sep-04
JP Jan-00
NASDAQ Jan-00
NL Oct-00
SD Jun-05
SW Jan-02
UK Jan-00
U.S. Jan-00
USRU2K Dec-02
USSPMC Jan-02
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Table IA.II
Global Equities Basis Asset-Level Summary Statistics

For each asset in the sample of global equities, the table includes the average value of the basis in the sample, the average value of the absolute value of the
basis in the sample, and the time-series standard deviation of the basis in the sample. The table reports statistics over the full sample, as well as over two
subsamples: January 2000 to June 2007 and July 2007 to December 2017. The basis is reported in annualized terms in basis points.

Jan. 2000-Dec. 2017 Jan. 2000-Jun. 2007 Jul. 2007-Dec.2017

Average
Basis

Average
Absolute

Basis

Basis
TS-Stdev

Average
Basis

Average
Absolute

Basis

Basis
TS-Stdev

Average
Basis

Average
Absolute

Basis

Basis
TS-Stdev

AU -10 72 106 -48 107 133 13 51 77
BD -2 32 57 -9 29 59 3 34 55
CN -15 40 57 -30 47 61 -4 35 51
DJIA 10 21 27 7 15 23 12 23 29
ES 12 93 158 6 111 198 17 80 122
EUROSTOXX 10 35 57 13 32 64 8 37 53
FR 11 47 90 19 63 122 5 36 56
HK -32 205 284 -38 242 325 -26 176 247
IT 11 43 61 -11 40 54 17 43 62
JP -21 54 78 -38 64 92 -8 46 64
NASDAQ 1 28 41 -2 28 44 3 28 38
NL 20 51 180 27 46 59 16 54 225
SD 7 73 145 42 103 207 1 68 128
SW 46 62 102 14 39 62 63 74 114
UK 8 32 47 3 38 57 13 27 37
U.S. 11 22 31 15 22 33 8 22 30
USRU2K -76 88 86 -89 96 83 -70 85 87
USSPMC -8 29 46 -9 17 24 -8 33 52
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B. Futures-Cash Basis Dynamics

Figure IA.1 plots the five-day rolling average of the futures-cash basis for each index in the

sample. The figure reveals a few interesting observations.

First, there are substantial differences in the time-series variation of the futures-cash basis

across indices (this can also be seen in Table IA.II). In particular, the basis in the Hong Kong

Hangseng Index is the most volatile, while the basis is considerably less volatile for the DJIA

and S&P 500 indices.

Second, there are some periodic spikes in the basis that we measure for each of the indices

in the sample, corresponding to futures expiration dates. These spikes arise from a combina-

tion of scaling by maturity for contracts that are close to maturity, as well as temporary price

dislocations that occur in the nearest-maturity contracts when market activity “rolls” to the

second-nearest maturity contract.

Third, some indices (for example, the German DAX index and the Swiss SMI index) also

appear to have seasonal spikes in the basis. These spikes tend to coincide with dividend season

for the stocks in these indices. These spikes are not likely to be driven by mismeasurement

of dividends; the German DAX index is a total return index where dividends do not enter into

futures contract prices, but it nevertheless still exhibits these seasonal patterns. Speculatively,

these patterns may be related to tax-related trading around dividend ex-dates.

Fourth, the basis is particularly large during the global financial crisis for most of the indices

in the sample, especially in October 2008. Of course, this is to be expected, and is consistent

with a similar increase in the magnitude of arbitrage spreads across different asset markets

during this period.
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Figure IA.1 The futures-cash basis across indices. The figure plots the five-day rolling average of the futures-cash basis for each
index in the sample.
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II. Impact of Dividend Measurement on Results

There are two notable obstacles we face in our construction of the basis. First, we do not

have data on expectations of dividends in the first part of the sample. Second, even when

we do have estimates of expected dividends, our estimates correspond to estimates under the

physical measure, while equation (8) requires estimates of expected dividends under the risk-

neutral measure. To address the first concern, we use realized dividends to proxy for expected

dividends. To address the second concern, we use dividends under the physical measure to

proxy for dividends under the risk-neutral measure. The equity index futures contracts in our

sample have maturities ranging from 10 days to three months, and in all of the markets we

consider, dividends are usually announced one to three months before the dividend ex-date.

We therefore expect the majority of dividends for an index to be known in our calculation of

the basis, mitigating concerns associated with the two issues.

We extensively analyze the impact of both modeling choices about dividends on our results

and find that the effects are small. Section A below provides evidence that dividends are gen-

erally announced one to three months in advance of the dividend ex-date. Section B below

plots monthly observations of dividend expectations versus realized dividends, and shows that

the two are closely related. Section C below analyzes measurement error in the basis from our

assumptions about dividends using two case studies, the first analyzing dividend futures prices

in the United States and the second comparing the basis of the DAX index, which is a total

return index (hence there is no issue associated with dividend measurement), to the basis of the

EUROSTOXX. Section D analyzes the impact that dividend risk premia may have on the esti-

mated relationship between the basis and returns in the data. In Section E below, we compare

how using realized dividends versus expectations of dividends from Goldman Sachs affects the

estimated relationships between the basis and returns in the sample from 2007 to 2017. We

find that our treatment of dividends introduces a small amount of measurement error but does

not meaningfully impact our results, and in some cases the results suggest that our treatment of
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dividends may slightly understate the strength of our findings.

A. Dividend Announcement Dates and Ex-Dates

We provide evidence for the number of days between the dividend announcement and the

dividend ex-date for stocks in the indices in our sample. We obtain data on dividend announce-

ment dates and dividend ex-dates from Xpressfeed and Datastream for the companies that are

part of the equity indices in our sample. Using these data, we calculate the average number of

calendar days between dividend announcement and ex-dates for each index, where each obser-

vation in the average corresponds with a single dividend paid by a company that is part of the

index.

Figure IA.2 plots the average number of calendar days between dividend announcement

and ex-dates for each index in the sample. The figure also plots a dotted red line at 30 days.

The average number of days ranges from approximately 22.5 days (for the Russell 2000 index)

to approximately 120 days for the French CAC40 index. With the exception of the Australian

index, the average time between the dividend announcement and ex-dates is more than 30

days for non-U.S. indices and often more than two months for European stocks. American

companies and Australian companies announce dividends a little bit less than 30 days before

the dividend ex-date.

One reason for the difference in the length between dividend announcement and ex-dates

across indices comes from differences in how often companies pay dividends. In European

countries, for example, the norm in our sample is to pay dividends semiannually or annually.

U.S. companies often pay quarterly or even monthly dividends, with the amount remaining

mostly constant from one quarter to the next (or one month to the next). Generally, companies

that pay dividends less often tend to have a wider gap between dividend announcement dates

and dividend ex-dates.

A last idiosyncrasy for our sample is that in Japan, common practice is to announce an esti-
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mated dividend amount on the announcement date. The announced amount is usually honored.

However, the amount of the dividend payment is not usually confirmed until after the dividend

ex-date. In the figure, we show the number of days between the dividend ex-date and the initial

dividend announcement date for Japan. On average, we find that dividends are confirmed a

little less than 40 days after dividend ex-dates.

Figure IA.2. Dividend announcement and ex-dates. The figure plots the average number of
calendar days between the dividend announcement and the dividend ex-date for the indices in
our sample. The data used in the calculation are from Xpressfeed and Datastream. For each
index, the average is calculated, where each observation corresponds with a single dividend
paid out by a company that is part of the index. The dotted red line corresponds with 30
calendar days.

9



Figure IA.3. Dividend expectations versus realizations.

B. Realized Dividends and Dividend Expectations

In Figure IA.3, we plot monthly observations of the Goldman Sachs dividend expectations

used in the futures-cash basis calculation (in annualized yield terms) against monthly observa-

tions of the realized dividends from Bloomberg (in annualized yield terms).1 Dividend yields

are calculated on a contract-by-contract basis. As in the construction of the basis, the dividend

yields here correspond to the nearest-maturity contract when it is more than 10 days from ex-

piring, and subsequently correspond to a linear combination of the nearest- and second-nearest

maturity contracts, with weight linearly transferring to the second contract. The sample period

is January 2007 through December 2017. Expectations are 0.99 correlated with realizations,

and the R2 of dividend expectations for explaining dividend realizations is 0.97 when imposing

a zero intercept and a slope of one.

1The very large dividend yields here come from the fact that companies in a number of countries in our sample

pay dividends once annually, with the timing of ex-dividends highly clustered within an index.
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C. Two Case Studies on the Impact of Dividend Assumptions

We present two case studies of the basis that suggest that the effect of our assumptions about

dividends is likely to be small. First, since December of 2015, listed futures on the quarterly

dividends of the S&P 500 have traded on the Chicago Mercantile Exchange. These futures con-

tracts allow us to directly observe the risk-neutral expectations of S&P 500 dividends required

to satisfy equation (8).2 In Figure IA.4, we plot the annualized expected dividend used in the

calculation of the basis for the S&P 500, Et(Dt+1)/St, from January 2016 to March 2020. The

figure plots the expected dividend yield calculated using risk-neutral dividend expectations,

dividend expectations from Goldman-Sachs, and realized dividends over the lifetime of the fu-

tures contracts. The lines lie on top of each other and are generally quite similar, though not

identical, with differences usually occurring near futures expiration dates. The average differ-

ence and average absolute difference between the basis calculated using dividend expectations

under the physical measure and the basis calculated using dividend expectations under the risk-

neutral measure are 0.6 bps and 4.3 bps. The average difference and average absolute difference

between the basis calculated using expectations under the risk-neutral measure and the basis

calculated using realized dividends are 1.6 bps and 4.3 bps. Compared with the average abso-

lute value and the time-series standard deviation of the basis of 22 bps and 31 bps reported for

the S&P500 as reported in Table IA.II, these numbers suggest that there may be some measure-

ment error coming from the treatment of dividends, but the error is small compared to variation

in the basis.

Second, our sample contains the German DAX index, which is unique in that it is a total

2Traded dividend futures, which provide expectations of dividends under the risk-neutral measure rather than

the physical measure, are available only for a subset of the indices in our sample. Additionally, with the exception

of dividend futures traded on the S&P 500, the majority of dividend futures tend to trade at annual expirations,

while the equity index futures in our sample generally trade at quarterly expirations. This mismatch prevents us

from using data from dividend futures, even where such data are available, in our calculations of the basis.
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return index. The level of the index is constructed by assuming that all dividends are reinvested,

so issues with dividend mismeasurement are mitigated. Turning to the asset-level summary

statistics for the basis presented in Table IA.II, we see that the time-series standard deviation of

the basis for the DAX is 57 bps and the average absolute basis is 32 bps. We can compare these

numbers with the same numbers for the closest counterpart to the DAX index in our sample,

the EUROSTOXX index, which is a broad-based index that contains Eurozone stocks. In our

sample, approximately 30% of the index weight of the EUROSTOXX comes from German

stocks that are also in the DAX index. The time-series standard deviation of the basis for the

EUROSTOXX index is 57 bps and the average absolute basis is 35 bps. In the sample for

which we have data for both the EUROSTOXX and the DAX (the EUROSTOXX index starts

in 2001), the average of the basis is 4 bps for the DAX and 10 bps for the EUROSTOXX. The

magnitude and behavior of the basis is quite similar for the DAX and EUROSTOXX indices,

suggesting that there is no clear or large bias stemming from our assumptions about dividends

for the EUROSTOXX index.
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Figure IA.4. S&P500 dividend expectations. The figure plots the annualized expected div-
idend yield for an S&P 500 futures contract used in the calculation of the basis, defined as
the expectation of index dividends divided by the spot price, using three different methods to
calculate. The blue line corresponds to dividend expectations under the risk-neutral measure,
which are extracted from the prices of quarterly dividend futures. The orange line corresponds
to dividend expectations under the physical measure, which are provided by Goldman Sachs.
The gray line plots the realized dividends.
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D. Expectations of Dividends Under the Physical Versus Risk-Neutral Mea-
sure and Returns

Throughout the paper, due to data availability, we use expectations of dividends under the

physical measure to proxy for expectations of the dividends under the risk-neutral measure. In

this section we provide back-of-the-envelope calculations to assess the impact of this choice.

van Binsbergen and Koijen (2017) calculate that the monthly holding-period returns of one-

year-maturity dividend strips range from 41 bps (for the S&P 500) to 1.1% (for the Japanese

Nikkei index), which are broadly in line with van Binsbergen, Brandt, and Koijen (2012).

These estimates present a conservative upper bound for the risk premium we expect to be

embedded in the dividend expectations of the futures contracts used in our sample. The equity

index futures contracts in our sample have maturities ranging from 10 days to three months.

As we show in Section A of this appendix, in all of the markets that we consider, dividends

are announced approximately one to three months prior to the dividend ex-date. We therefore

expect the majority of dividends for an index to be known in our calculations of the basis (and

thus have little risk premium associated with them). Put differently, we expect the majority of

the risk premium earned in the one-year-maturity dividend strips analyzed by van Binsbergen

and Koijen (2017) to be earned on ex-dividends beyond the maturity of the contracts that we

use in the calculation of bases. The case studies in Section C of this appendix suggest that the

magnitude of error introduced in our calculations of the basis may be around one bp to five bps,

which are small in comparison to the basis we measure. The numbers also imply much smaller

dividend risk premium embedded in the very short-maturity contracts we analyze, compared to

those studied in van Binsbergen and Koijen (2017).

Nevertheless, we conduct additional analysis on the impact that potentially larger dividend

risk premia may have on our results. To do so, we calculate the basis under various assumptions

for the dividend risk premium, which for simplicity we assume to be constant over time and

across indices. For each day and each futures contract in our sample over the period 2000 to
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2017, we calculate the annualized difference in the futures-cash basis that comes from dividend

risk premia by using the amount of ex-dividends expected until expiration and our assumed

level of dividend risk premia. Subtracting these estimates from the futures-cash basis for each

contract, we reconstruct the index-level basis series for each equity index and rerun our tests.

For the sample from January 2000 to December 2017, we rerun the regressions in Table

IV using the basis series constructed with various dividend risk premium estimates. We use

monthly dividend risk premia estimates of 0 bps (the baseline estimates reported in the main

paper), 20 bps, 50 bps, 80 bps, 110 bps. The results are reported in Table IA.III. The regression

coefficients are broadly similar. The t-statistics actually increase as we increase the estimated

dividend risk premium. Differences in dividends over time for the same index capture stocks

going ex-dividend. The regression results may be picking up on well-documented dividend ex-

date effects, whereby stock prices do not drop by the full amount of the dividend (e.g., Grinblatt,

Masulis, and Titman (1984)). This would be consistent with the stronger contemporaneous

basis-return relationship we observe as we increase the assumed dividend risk premium.

From January 2000 to December 2017, we rerun the return predictability regressions from

Table V using our basis series constructed under the various dividend risk premia estimates.

Table IA.IV reports the results. The regression coefficients are broadly similar under various

dividend risk premia assumptions. Return predictability becomes slightly stronger as we in-

crease the magnitude of the dividend risk premia. Increasing the dividend risk premia estimate

for an equity index makes the estimated basis more correlated with the index’s “carry” (defined

as the normalized difference between the futures and spot price of the index), from Koijen,

Moskowitz, Pedersen, and Vrugt (2018), which also has strong return predictability.

We also form cross-sectional and timing trading strategies using the newly constructed

futures-cash basis series. Table IA.V reports the annualized return statistics for these portfolios.

For the cross-sectional strategies, when implemented in the futures market, the performance

decays slightly, but annualized Sharpe ratios remain above 0.78 in all specifications. In the

15



spot market, Sharpe ratios are all above those reported in the baseline specification. For the

timing strategies, the alternative strategies all have slightly higher Sharpe ratios than the main

specification.

The analysis suggests that the time-series and cross-sectional return predictability of the

futures-cash basis are not largely affected by assumptions about dividend risk premia.
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Table IA.III
Contemporaneous Relationship Between the Basis and Returns under Dividend Risk

Premia Assumptions

The table reproduces the regressions in Panel A of Table IV using futures-cash basis series constructed by making
assumptions about the size of monthly dividend risk premia. Each row labeled x corresponds to the basis con-
structed assuming a monthly dividend risk premium of x bps. t-statistics are reported in parentheses. ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

Futures Market Returns Spot Market Returns

(1) (2) (3) (4) (5) (6) (7) (8)

0 47.41∗∗∗ 17.95∗∗∗ 47.41∗∗∗ 17.95∗∗∗ 43.20∗∗∗ 13.68∗∗∗ 43.20∗∗∗ 13.68∗∗∗

(5.25) (5.39) (5.25) (5.39) (4.99) (3.91) (4.99) (3.91)

20 48.56∗∗∗ 19.21∗∗∗ 48.59∗∗∗ 19.20∗∗∗ 44.53∗∗∗ 14.99∗∗∗ 44.56∗∗∗ 14.99∗∗∗

(4.80) (6.51) (4.80) (6.51) (4.64) (4.69) (4.64) (4.69)

50 49.04∗∗∗ 19.57∗∗∗ 49.07∗∗∗ 19.56∗∗∗ 45.05∗∗∗ 15.39∗∗∗ 45.08∗∗∗ 15.39∗∗∗

(4.69) (6.50) (4.69) (6.50) (4.53) (4.80) (4.53) (4.81)

80 49.17∗∗∗ 19.78∗∗∗ 49.20∗∗∗ 19.78∗∗∗ 45.25∗∗∗ 15.68∗∗∗ 45.28∗∗∗ 15.68∗∗∗

(4.66) (6.45) (4.66) (6.44) (4.50) (4.86) (4.50) (4.86)

110 48.97∗∗∗ 19.86∗∗∗ 49.00∗∗∗ 19.85∗∗∗ 45.15∗∗∗ 15.86∗∗∗ 45.17∗∗∗ 15.86∗∗∗

(4.70) (6.40) (4.70) (6.39) (4.53) (4.88) (4.53) (4.88)

Time FE No Yes No Yes No Yes No Yes
Entity FE No No Yes Yes No No Yes Yes
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Table IA.IV
Global Equities Basis Return Predictability Under Dividend Risk Premia Assumptions

The table reproduces the regressions in Panel A of Table V using futures-cash basis series constructed by making
assumptions about the size of monthly dividend risk premia. Each row labeled x corresponds to the basis con-
structed assuming a monthly dividend risk premium of x bps. t-statistics are reported in parentheses. ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

Futures Market Returns Spot Market Returns

(1) (2) (3) (4) (5) (6) (7) (8)

0 -5.09∗∗∗ -3.85∗∗∗ -5.06∗∗∗ -3.80∗∗∗ -3.54∗∗ -2.28∗∗ -3.44∗∗ -2.15∗∗

(-3.42) (-4.30) (-3.17) (-4.21) (-2.50) (-2.32) (-2.26) (-2.14)

20 -4.84∗∗∗ -4.22∗∗∗ -4.91∗∗∗ -4.18∗∗∗ -3.34∗∗ -2.66∗∗ -3.34∗ -2.54∗∗

(-3.03) (-4.40) (-2.93) (-4.36) (-2.19) (-2.54) (-2.08) (-2.39)

50 -5.26∗∗∗ -4.35∗∗∗ -5.38∗∗∗ -4.38∗∗∗ -3.78∗∗ -2.82∗∗ -3.83∗∗ -2.74∗∗

(-3.35) (-4.60) (-3.23) (-4.60) (-2.53) (-2.69) (-2.42) (-2.60)

80 -5.48∗∗∗ -4.34∗∗∗ -5.68∗∗∗ -4.44∗∗∗ -4.09∗∗ -2.87∗∗ -4.19∗∗ -2.86∗∗

(-3.51) (-4.67) (-3.37) (-4.66) (-2.74) (-2.78) (-2.61) (-2.74)

110 -5.52∗∗∗ -4.19∗∗∗ -5.78∗∗∗ -4.37∗∗∗ -4.24∗∗ -2.83∗∗ -4.40∗∗ -2.89∗∗

(-3.55) (-4.64) (-3.39) (-4.63) (-2.83) (-2.82) (-2.70) (-2.80)

Time FE No Yes No Yes No Yes No Yes
Entity FE No No Yes Yes No No Yes Yes
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Table IA.V
Global Equity LMH Liquidity Demand Strategy Performance by Dividend Risk Premium Assumption

The table displays statistics of the returns of the LMH liquidity demand strategies constructed by making assumptions about the size of the dividend risk
premium used in the calculation of the basis. Panel A presents results for the cross-sectional LMH liquidity demand strategy implemented in futures markets.
Panel B presents results for the cross-sectional LMH liquidity demand strategy implemented in spot markets. Panel C presents results for the LMH liquidity
demand timing strategy implemented in futures markets. Panel D displays results for the LMH liquidity demand timing strategy implemented in spot markets.

Panel A: LMH Liquidity Demand Futures XS Strategy

Assumed Monthly
Dividend Risk Premium
(Basis Points)

Weekly Mean Annualized Mean
Annualized

Standard Deviation Skewness Kurtosis
Annualized

Sharpe Ratio

0 0.14% 7.21% 8.40% 0.53 4.00 0.86
20 0.14% 7.35% 8.95% 0.51 5.84 0.82
50 0.14% 7.40% 8.90% 0.66 6.72 0.83
80 0.13% 6.87% 8.86% 0.71 7.02 0.78
110 0.13% 6.92% 8.90% 0.70 6.69 0.78

Panel B: LMH Liquidity Demand Spot XS Strategy

Assumed Monthly
Dividend Risk Premium
(Basis Points)

Weekly Mean Annualized Mean
Annualized

Standard Deviation Skewness Kurtosis
Annualized

Sharpe Ratio

0 0.10% 5.22% 8.36% 0.17 3.71 0.62
20 0.11% 5.58% 8.67% 0.25 4.35 0.64
50 0.11% 5.75% 8.62% 0.33 4.66 0.67
80 0.10% 5.38% 8.60% 0.38 4.58 0.63
110 0.10% 5.45% 8.64% 0.38 4.31 0.63
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Panel C: LMH Liquidity Demand Futures Timing Strategy

Assumed Monthly
Dividend Risk Premium
(Basis Points)

Weekly Mean Annualized Mean
Annualized

Standard Deviation Skewness Kurtosis
Annualized

Sharpe Ratio

0 0.29% 15.11% 21.79% 0.60 4.31 0.69
20 0.30% 15.41% 22.69% 0.42 4.12 0.68
50 0.31% 16.14% 22.51% 0.46 4.30 0.72
80 0.32% 16.55% 22.22% 0.51 4.55 0.74
110 0.31% 16.33% 21.84% 0.52 4.89 0.75
140 0.31% 15.88% 21.26% 0.55 5.13 0.75

Panel D: LMH Liquidity Demand Spot Timing Strategy

Assumed Monthly
Dividend Risk Premium
(Basis Points)

Weekly Mean Annualized Mean
Annualized

Standard Deviation Skewness Kurtosis
Annualized

Sharpe Ratio

0 0.22% 11.65% 21.48% 0.43 3.99 0.54
20 0.23% 12.04% 22.19% 0.31 3.66 0.54
50 0.25% 12.92% 22.00% 0.33 3.73 0.59
80 0.26% 13.50% 21.70% 0.37 3.84 0.62
110 0.26% 13.48% 21.30% 0.36 4.05 0.63
140 0.25% 13.25% 20.71% 0.37 4.17 0.64
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E. Using Realized Dividends versus Expected Dividends in Basis Construc-
tion

In the early part of our sample (from 2000 through the end of 2006), due to lack of data

availability on dividend expectations, we proxy for the expectations of dividends on an index

from time t until the expiration of a futures contracted traded on the index by using the realized

ex-dividends on the index from time t until expiration. We argue and show that the use of

realized dividends to proxy for expected dividends likely understates the relationship between

the basis and expected returns in equity index futures. First, we argue that the use of realized

dividends in the calculation of the basis is likely to have little effect. In all of the markets that

we consider, dividends are announced one to three months prior to the ex-date, which is about

the maturity of most of the contracts that we consider. We therefore expect the majority of

dividends for an index to already be embedded in the expectations of the basis. Second, given

the negative relationship we find between the basis and subsequent market returns, the use of

realized dividends to proxy for expected dividends in equity index futures in the early part of

the sample may, if anything, provide a conservative estimate of the relationship. Equity indices

that realize negative dividend surprises (realized dividends less than expected) will have a more

negative basis when constructed using realized dividends, and vice-versa for equity indices

that realize positive dividend surprises. We expect negative (positive) dividend surprises to

be related to negative (positive) returns, so we expect that the use of realized dividends may

understate the relationship between bases and subsequent returns.

We rerun the regressions capturing the contemporaneous relationship between the basis

and returns from Table IV for the 2007 to 2017 subsample using the dividend expectations

from Goldman Sachs and using realized index dividends. Table IA.VI reports the results. The

coefficients and t-statistics are very similar when using realized dividends and when using

dividend expectations.

Next, we rerun the basis return predictability regressions reported in Table V, for the 2007
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to 2017 subsample, using both the dividend expectations from Goldman Sachs and realized

dividends in the construction of the basis. The results are similar, although the coefficients and

statistical significance are smaller when using realized dividends. This is consistent with the

idea that the use of realized dividends might understate the predictive power the basis has for

subsequent returns.

We also construct the LMH liquidity demand strategies using realized dividends and com-

pare them to the strategies constructed using dividend expectations. The strategies constructed

using realized dividends are highly correlated with the corresponding strategies constructed

using dividend expectations (0.88 to 0.89), but the strategies constructed using realized div-

idends have lower returns on average (Table IA.VIII). Once again, this is consistent with a

slight understatement of the strategy’s profitability when using realized as opposed to expected

dividends.

Table IA.VI
Contemporaneous Relationship Between Changes in the Basis and Returns, 2007 to 2017

The table reproduces the regressions in Panel A of Table IV using the futures-cash basis series constructed using
dividend expectations from Goldman Sachs (“Expected Dividends”) and using the actual dividends paid out for
each index (“Realized Dividends”). The sample period is January 2007 through December 2017. t-statistics are
reported in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Futures Market Returns Spot Market Returns

(1) (2) (3) (4) (5) (6) (7) (8)

Expected Dividends 79.00∗∗∗ 27.25∗∗∗ 79.00∗∗∗ 27.26∗∗∗ 74.00∗∗∗ 21.92∗∗∗ 74.01∗∗∗ 21.92∗∗∗

(4.01) (4.81) (4.01) (4.81) (3.91) (3.66) (3.92) (3.66)

Realized Dividends 75.47∗∗∗ 27.05∗∗∗ 75.48∗∗∗ 27.05∗∗∗ 70.65∗∗∗ 22.02∗∗∗ 70.65∗∗∗ 22.02∗∗∗

(4.19) (4.68) (4.19) (4.68) (4.08) (3.57) (4.08) (3.57)

Time FE No Yes No Yes No Yes No Yes
Entity FE No No Yes Yes No No Yes Yes
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Table IA.VII
Global Equities Basis Return Predictability, 2007 to 2017

The table reproduces the regressions in Panel A of Table V using the futures-cash basis series constructed using
dividend expectations from Goldman Sachs (“Expected Dividends”) and using the actual dividends paid out for
each index (“Realized Dividends”). The sample period is January 2007 through December 2017. t-statistics are
reported in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Futures Market Returns Spot Market Returns

(1) (2) (3) (4) (5) (6) (7) (8)

Expected Dividends -5.93∗ -4.76∗∗ -6.07∗ -4.81∗∗ -4.38 -3.09 -4.43 -3.01
(-1.99) (-2.89) (-1.89) (-2.83) (-1.51) (-1.61) (-1.41) (-1.49)

Realized Dividends -4.57 -4.26∗∗ -4.66 -4.35∗∗ -3.17 -2.76 -3.21 -2.78
(-1.34) (-2.34) (-1.29) (-2.31) (-0.97) (-1.42) (-0.93) (-1.37)

Time FE No No Yes Yes No No Yes Yes
Entity FE No Yes No Yes No Yes No Yes
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Table IA.VIII
LMH Liquidity Demand Strategy Returns: Realized Dividends vs. Ex-ante Expected Dividends, 2007 to 2017

The table reproduces the LMH liquidity demand trading strategies series constructed using dividend expectations from Goldman Sachs (“Expected Dividends”)
and using the actual dividends paid out for each index (“Realized Dividends”). “XS” strategies are cross-sectional trading strategies and “TS” strategies are
timing strategies. The sample period is January 2007 through December 2017. Strategies are rebalanced weekly.

Weekly Mean Annualized Mean
Annualized

Standard Deviation Skewness Kurtosis
Annualized

Sharpe Ratio

XS Futures Expected Dividends 0.13% 6.96% 7.60% 0.54 3.73 0.91
Realized Dividends 0.12% 6.41% 7.72% 0.33 2.50 0.83

Spot Expected Dividends 0.10% 5.43% 7.34% 0.26 2.69 0.74
Realized Dividends 0.09% 4.73% 7.50% 0.13 2.54 0.63

TS Futures Expected Dividends 0.31% 16.14% 23.06% 0.72 4.81 0.70
Realized Dividends 0.26% 13.44% 23.16% 0.41 5.89 0.58

Spot Expected Dividends 0.26% 13.50% 22.67% 0.62 4.52 0.60
Realized Dividends 0.20% 10.49% 22.75% 0.33 5.72 0.46
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III. Index-Level Regressions

As a supplement to the panel regressions that we present to test the main predictions of the

model, we present results from time-series regressions for each index. As a test of the first

prediction of the model, Figure IA.5 plots t-statistics of contemporaneous regressions of the

basis on net futures positions of each investor category. As a test of the second of the model,

Figure IA.6 plots t-statistics of contemporaneous time-series regressions of weekly futures and

spot market returns on changes in the basis for each index in our sample. As a test of the

third prediction of the model, Figure IA.7 plots t-statistics of time-series regressions of weekly

futures and spot market returns on the basis measured at the end of the previous week. For

all index-level regressions, standard errors are calculated using the Newey-West adjustment

with 12 lags to control for potential autocorrelations in errors. In each plot, we also show

the t-statistics of the pooled time-series regression with entity fixed effects given in the main

specification.
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Figure IA.5. Contemporaneous relationship between the basis and dealer futures posi-
tions. The figure plots t-statistics from contemporaneous time-series regressions of the basis
on net futures positions for each American index in our sample. Standard errors are calculated
using a Newey-West correction with 12 lags. The pooled bars corresponds to t-statistics re-
ported in Table III for the panel regressions with entity fixed effects.
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Figure IA.6. Contemporaneous relationship between changes in the basis and returns.
The figure plots t-statistics from contemporaneous time-series regressions of weekly futures
and spot market returns on changes in the basis for each index in our sample. Standard errors
are calculated using a Newey-West correction with 12 lags. The pooled bars correspond to
t-statistics reported in Table IV for the panel regressions with entity fixed effects.
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Figure IA.7. Return predictability of the basis. The figure plots t-statistics from predictive
time-series regressions of weekly futures and spot market returns on the lagged for each index
in our sample. Standard errors are calculated using a Newey-West correction with 12 lags. The
pooled bars correspond to t-statistics reported in Table V for the panel regressions with entity
fixed effects.
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IV. Impact of Assumed Benchmark Funding Rates

In our construction of the basis, we assume that the benchmark funding rate for an index is

the interbank offer rate in the location that the index trades. In the literature on covered interest

rate (CIP) deviations, Rime, Schrimpf, and Syrstad (2019) point out that interbank rates likely

do not reflect the true funding rate at which arbitrageurs can fund positions. Calculating the

profitability of CIP arbitrage requires accurately capturing the uncollateralized borrowing rates

at which traders in currency markets can fund their positions. Rime, Schrimpf, and Syrstad

(2019) find that only a limited number of financial institutions are able to profit from CIP

arbitrage.

Our main goal in this paper is not to analyze the profitability of the futures-spot arbitrage

trade, but rather to connect deviations from the law of one price, as measured using benchmark

borrowing rates, to liquidity demand that simultaneously affects futures prices and spot prices.

Nevertheless, the discussion in currency markets does raise the question as to how our results

may be affected by using interbank lending rates in our construction of the basis, which may not

reflect the true uncollateralized rate at which arbitrageurs can borrow. To address this question,

we run cross-sectional analyses of the basis in markets in which the benchmark borrowing rates

are the same. For example, if we compare the basis for futures contracts on U.S. indices, the

cross-sectional dispersion in bases does not depend upon whether we assume that the bench-

mark funding rate is LIBOR or the U.S. Treasury bill rate because the benchmark rate used is

the same for all of the U.S. indices. Comparing the basis across indices in the same market

allows us to quantify the magnitude of bases without having to know the exact funding rate at

which investors can finance their positions. Moreover, it also allows us to test if the patterns in

returns that we document are affected by assumptions about the benchmark borrowing rate.

First, the analysis in Section A of the main article pertains solely to indices traded on U.S.

exchanges. Hence, the regression results with time fixed effects in Table III of the basis on

futures positions remain the same, no matter what benchmark funding rate in the United States
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is used. The evidence suggests that a one-standard-deviation change in dealer futures positions

corresponds to a -10 bp (with time and entity fixed effects) to a -25.5 bp (with time fixed effects)

change in the basis across indices, no matter which benchmark rate (Overnight Indexed Swap

rate, T-bill rate, or Secured Overnight Financing rate) we use, since these rates are the same for

all U.S. indices and hence difference out in the cross-sectional strategy.

Second, we look to the cross-section of Eurozone equity indices in our sample – the EU-

ROSTOXX index, German DAX index, French CAC40 index, Spanish IBEX 35 index, Italian

FTSE MIB index, and Dutch AEX index. We find that the median cross-sectional standard

deviation of the basis across Eurozone indices is 39 bps over our sample. The median cross-

sectional standard deviation is 29 bps post-2010. Hence, even controlling for the benchmark in-

terest rate, there is evidence of heterogeneity in the basis across indices. To understand whether

differences in the basis capture the same types of liquidity effects within the Eurozone, we con-

struct a within-Eurozone cross-sectional LMH liquidity demand strategy, following equation

(18). The weekly rebalanced strategy has a Sharpe ratio of 0.53 (t-statistic 2.19) when imple-

mented in the futures market, and a Sharpe ratio of 0.37 (t-statistic 1.57) when implemented in

the spot market. The monthly rebalanced strategy has a Sharpe ratio of 0.71 in the futures mar-

ket (t-statistic 2.93) and a Sharpe ratio of 0.61 when implemented in the spot market (t-statistic

2.53). The futures and spot market predictability of the basis persists even when looking within

Europe, where there are no differences in benchmark borrowing rates and the equity indices

have highly correlated returns.3 This evidence suggests that differences in assumed benchmark

borrowing rates are unlikely to explain our results.

3We could perform a similar analysis for the return predictability of the basis in the cross-section of U.S.

indices. However, this is less informative, as it yields a largely static portfolio that is long small-cap stocks and

short large-cap stocks, due to the strong negative basis of the Russell 2000.
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V. Global Equities: Basis Return Predictability and U.S.
Indices

In our main results, our cross-section of 18 equity indices includes five indices on U.S.

stocks: the DJIA, Nasdaq, Russell 2000, S&P500, and S&P 400. Here, we analyze the robust-

ness of our results to using alternative cross-sections that do not include as many American

indices. We consider two cross-sections (in addition to the cross-section used in the main re-

sults). The first excludes all U.S. indices except the S&P500 (“S&P500”). The second excludes

all U.S. indices (“Ex U.S.”). The results are very similar regardless of whether we include the

U.S. indices.

We first repeat the full-sample regression in Panel A of Table IV for the two additional

cross-sections. The results are reported in Table IA.IX, together with the regression results

presented in the main text. We also repeat the full-sample regression in Panel A of Table V for

the two additional cross-sections. Table IA.X reports regression together with those from the

main table. The results are all very similar across the three cross-sections.

We next form alternative LMH liquidity demand portfolios using the two alternative cross-

sections, in addition to our baseline specification. Table IA.XI displays the statistics of the strat-

egy returns. We observe a slight decrease in the performance of the cross-sectional strategies

without the U.S. indices, and a slight improvement in the performance of the timing strategies,

but the differences are small.
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Table IA.IX
Contemporaneous Relationship Between the Basis and Returns, with Different Indices

The table reproduces the regressions in Panel A of Table IV using different cross-sections of assets. The row labeled “S&P500” excludes all U.S. indices
except the S&P500 index. The row labeled “Ex U.S.” excludes all U.S. indices. t-statistics are reported in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Futures Market Returns Spot Market Returns

(1) (2) (3) (4) (5) (6) (7) (8)

Main Specification 47.41∗∗∗ 17.95∗∗∗ 47.41∗∗∗ 17.95∗∗∗ 43.20∗∗∗ 13.68∗∗∗ 43.20∗∗∗ 13.68∗∗∗

(5.25) (5.25) (5.39) (5.39) (4.99) (4.99) (3.91) (3.91)

S&P500 42.47∗∗∗ 16.34∗∗∗ 42.46∗∗∗ 16.34∗∗∗ 38.14∗∗∗ 12.14∗∗∗ 38.14∗∗∗ 12.14∗∗∗

(6.07) (4.92) (6.07) (4.92) (5.83) (3.30) (5.83) (3.30)

Ex US 41.83∗∗∗ 16.11∗∗∗ 41.83∗∗∗ 16.11∗∗∗ 37.53∗∗∗ 11.92∗∗∗ 37.53∗∗∗ 11.92∗∗∗

(6.15) (4.79) (6.15) (4.79) (5.89) (3.20) (5.89) (3.20)

Time FE No Yes No Yes No Yes No Yes
Entity FE No Yes No Yes No Yes No Yes
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Table IA.X
Global Equities Basis Return Predictability, with Different Indices

The table reproduces the regressions in Panel A of Table V using different cross-sections of assets. The row labeled “S&P500” excludes all U.S. indices except
for the S&P500 index. The row labeled “Ex U.S.” excludes all U.S. indices. t-statistics are reported in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Futures Market Returns Spot Market Returns

(1) (2) (3) (4) (5) (6) (7) (8)

Main Specification -5.09∗∗∗ -3.85∗∗∗ -5.06∗∗∗ -3.80∗∗∗ -3.54∗∗ -2.28∗∗ -3.44∗∗ -2.15∗∗

(-3.42) (-4.30) (-3.17) (-4.21) (-2.50) (-2.32) (-2.26) (-2.14)

S&P500 -5.29∗∗∗ -4.01∗∗∗ -5.35∗∗∗ -3.95∗∗∗ -3.64∗∗ -2.38∗∗ -3.65∗∗ -2.28∗∗

(-3.92) (-4.53) (-3.88) (-4.58) (-2.80) (-2.37) (-2.76) (-2.29)

Ex U.S. -5.14∗∗∗ -4.00∗∗∗ -5.19∗∗∗ -3.94∗∗∗ -3.49∗∗ -2.39∗∗ -3.50∗∗ -2.28∗∗

(-3.86) (-4.46) (-3.84) (-4.50) (-2.72) (-2.34) (-2.69) (-2.25)

Time FE No Yes No Yes No Yes No Yes
Entity FE No No Yes Yes No No Yes Yes
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Table IA.XI
LMH Liquidity Demand Strategy Returns: Impact of U.S. Indices

The table reproduces the LMH liquidity demand trading strategies series constructed using a different set of indices. Strategies labeled “S&P500” exclude
U.S. indices except the S&P500. Strategies labeled “Ex U.S.” exclude all U.S. indices. “XS” strategies are cross-sectional strategies and “TS” strategies are
timing strategies. Strategies are weekly rebalanced weekly.

Weekly Mean Annualized Mean
Annualized

Standard Deviation Skewness Kurtosis
Annualized

Sharpe Ratio

XS Futures Baseline 0.14% 7.27% 8.40% 0.52 3.99 0.86
S&P500 0.14% 7.31% 8.81% 0.25 3.18 0.83
Ex U.S. 0.14% 7.14% 9.17% 0.19 2.79 0.78

Spot Baseline 0.10% 5.27% 8.37% 0.17 3.70 0.63
S&P500 0.10% 5.33% 8.69% 0.07 2.86 0.61
Ex U.S. 0.10% 5.09% 9.03% 0.02 2.40 0.56

TS Futures Baseline 0.28% 14.61% 21.53% 0.52 4.09 0.68
S&P500 0.31% 16.21% 22.64% 0.61 3.20 0.72
Ex U.S. 0.32% 16.44% 22.96% 0.61 3.13 0.72

Spot Baseline 0.22% 11.28% 21.27% 0.36 3.87 0.53
S&P500 0.24% 12.62% 22.19% 0.54 2.95 0.57
Ex U.S. 0.25% 12.84% 22.47% 0.55 2.88 0.57
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VI. Implications for Implied Interest Rates from
Derivatives

Our result that the basis is related to demand in futures markets also has implications for

recent work that studies interest rates implied from derivative prices. For example, van Bins-

bergen, Diamond, and Grotteria (2022) extract the risk-free rates implied by SPX and DJIA

equity index options and compare them to U.S. Treasury yields to study the behavior of the

Treasury “convenience yield,” since the former does not reflect the money-like liquidity ben-

efits that make Treasury securities “convenient.” The equity index futures that we study are

closely related to the equity index options van Binsbergen, Diamond, and Grotteria (2022) ex-

tract interest rates from, so it is of interest to examine our results through this complementary

lens.

The futures-cash basis is the difference between interest rates embedded in futures prices

and interbank lending rates. One issue with extracting implied interest rates from futures is

estimating expected dividends, which introduces error. In addition, we focus primarily on

futures contracts with less than three months maturity due to limited data on dividend esti-

mates, while van Binsbergen, Diamond, and Grotteria (2022) use options with longer maturi-

ties to study the term structure of convenience yields. Since nearly all trading happens in the

closest-to-expiration contract, the type of demand pressure we identify might not be present in

longer-maturity contracts. Of course, convenience yields should be present for short-maturity

safe assets too, so understanding interest rates implied in shorter-maturity derivatives prices is

interesting.4

With these caveats in mind, we recast our results in terms of understanding interest rates

embedded in futures prices. First, consider the results relating the basis to futures positions

4In equilibrium, the supply of and demand for leverage can be related to the convenience yield (e.g., in the

model of Diamond (2020)). The futures demand we study could be related to the Treasury convenience yield, but

this potential relationship is outside the scope of our paper.
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in Table III, which provide some quantitative guidance on the extent to which futures demand

can affect futures-implied interest rates. We find that a one-standard-deviation increase in the

futures positions of dealers corresponds to a 10 basis point decrease in the basis, which equiva-

lently corresponds to a 10 basis point decrease in the implied interest rate in futures. Taking the

estimates from van Binsbergen, Diamond, and Grotteria (2022), who compare option-implied

interest rates to matched-maturity Treasury yields, our results suggest that 10 to 20 bps may be

coming from demand shocks (depending on their size). These effects are small but not incon-

sequential. The results also suggest that when interpreting the behavior of derivatives-implied

interest rates in event-study contexts, it might be important to understand how those events

impact demand for risky assets.

Second, the demand channel can also explain some of the cross-sectional heterogeneity in

the basis we observe within a given market. For example, the large variation in the basis across

U.S. equity indices in Table IA.II is difficult to justify purely from differences in marginal in-

vestor funding rates, but may be accommodated by a combination of varying futures demand

and intermediary costs. Consider the basis in Russell 2000 futures, which provides an interest-

ing, albeit extreme, case. Table IA.II shows that the basis for Russell 2000 futures is on average

-76 bps, suggesting that the interest rate embedded in its futures are consistently far lower than

interbank lending rates. The futures positioning and securities lending data for the Russell 2000

suggest potential reasons for this large negative basis. Russell 2000 stocks, which are small-

cap, are difficult to borrow and have high security lending fees (on average 64 bps, which is

the highest among the equity indices in our sample). Hedge funds engaged in small-cap equity

strategies might have persistent demand for short positions in R2000 futures, if they are a more

convenient/cheaper vehicle to hedge their long positions than short-selling individual names.

This demand for short futures exposure would result in a negative futures-cash basis. Another

story consistent with these observations is that high security lending fees make it particularly

cheap for dealers to provide long leverage in futures on the R2000, which also results in a neg-
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ative basis. In both cases, R2000 futures illustrate that futures demand and dealer provision of

leverage can substantially change the interest rates embedded in risky assets.

Finally, we directly back out the interest rates implied by S&P 500 futures prices to compare

them to van Binsbergen, Diamond, and Grotteria (2022). We construct three-month implied

interest rates for S&P500 futures by linearly interpolating the interest rates embedded in the

nearest- and second-nearest-to-expiration futures contracts.5 We construct the Treasury basis

as the three-month futures implied interest rate minus the three-month U.S. Treasury yield. We

similarly construct the three-month LIBOR basis as the three-month futures implied interest

rate minus 3-month LIBOR. The first column of Panel A Table IA.XII reports the average

values for the futures implied interest rates and the basis that we construct, as well as the values

for the corresponding 3-month benchmark interest rates. We also report the same statistics for

six- and 12-month SPX box-spread implied interest rates, obtained from Jules van Binsbergen’s

website.

Table IA.XIII reports the correlations between the LIBOR basis, Treasury basis, and the

positions of dealers in S&P 500 futures contracts. Panel A reports correlations from June

2006 to December 2017 and Panel B reports correlations from January 2010 to December

2017. The three-month LIBOR basis that we estimate from futures contracts is 0.52 and 0.37

correlated with the six- and 12-month LIBOR basis constructed using the vBDG box spreads

in the longer sample (and 0.54 and 0.51 in the post-2010 sample). The three-month Treasury

basis that we estimate from futures contracts is 0.81 and 0.80 correlated with the Treasury basis

constructed using vBDG box spreads in the longer sample (and 0.44 and 0.41 correlated in the

post-2010 sample). These numbers suggest commonality in the futures basis we estimate and

the basis implied by the vBDG box spreads. The three-month LIBOR and Treasury basis that

5Because of poor behavior of scaling by maturity when maturity approaches zero, we use the nearest expira-

tion contract only when it has more than 10 days to maturity. This means that the maturity for the interest rate that

we extract is actually between three months and 3.5 months.
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we estimate are negatively correlated with dealers’ futures positions (correlations of -0.25 and

-0.55 for the LIBOR basis in the two samples and -0.32 and -0.28 for the Treasury basis in the

two samples), consistent with our story that the implied interest rates in futures contracts are

related to the futures inventories of dealers. The correlations between dealer positions and the

six- and 12-month LIBOR and Treasury bases constructed using the vBDG box spreads are a

bit more inconsistent. In the sample from 2006 to 2017, the correlations between the six- and

12-month LIBOR basis and dealers’ futures positions are 0.13 and -0.01. These correlations

are -0.32 and -0.30 in the post-2010 sample. The correlations between the six- and 12-month

Treasury bases are -0.18 and -0.26 in the 2006 to 2017 sample, while they are 0.20 and 0.09

in the post-2010 sample. It is unclear whether the six- and 12-month option-implied interest

rates reflect the same types of leverage demand pressures that are present in the three-month

futures-implied interest rate we estimate.

Further understanding the similarities between futures- and option-implied interest rates,

and their behavior across maturities, is beyond the scope of this paper, but represents an inter-

esting avenue for future research. Our results highlight that demand pressures can materially

affect derivatives prices and the interest rates they imply, consistent with results in other settings

(e.g., Bollen and Whaley (2004), Garleanu, Pedersen, and Poteshman (2009), Constantinides

and Lian (2021), Chen, Joslin, and Ni (2018), and Borio, McCauley, McGuire, and Sushko

(2016)), providing complimentary evidence that expands the economic interpretation of im-

plied interest rates obtained from derivative prices.
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Table IA.XII
S&P 500 Derivatives Implied Interest Rates

The table reports the average of S&P derivatives implied interest rates and benchmark interest rates. The first
column corresponds to three-month interest rates calculated from S&P 500 futures. The second and third columns
correspond to six- and 12-month interest rates calculated from the S&P 500 “box spreads”, in van Binsbergen,
Diamond, and Grotteria (2022) (vBDG). The Treasury basis is the difference between the implied interest rate and
the same maturity U.S. Treasury yield. The LIBOR basis is the difference between the implied interest rate and
the same maturity LIBOR rate. All values in the panel are in bps.

S&P 500 Derivatives Implied Interest Rates
Jan. 2004 to Dec. 2017

HMV vBDG vBDG
Avg. Implied Interest Rate 168.5 176.0 183.3
Avg. LIBOR 165.5 183.5 208.4
Avg. Treasury Yield 120.9 141.0 146.7

Avg. Treasury Basis 47.6 35.0 36.6
Avg. LIBOR Basis 3.0 -7.5 -25.1
Stdev. LIBOR Basis 22.7 20.4 25.0
Stdev. Treasury Basis 43.6 21.9 20.4

Maturity 3 months 6 months 12 months
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Table IA.XIII
S&P 500 Interest Rate Spread Correlations

The table reports correlations of the three-, six-, and 12-month LIBOR basis, the three-, six-, and 12-month Treasury basis, and dealer positions in S&P 500
index futures from the Traders in Financial Futures report. The LIBOR basis for a maturity is defined as the derivatives implied interest rate minus the LIBOR
rate for the corresponding maturity. The Treasury basis for a maturity is defined as the derivatives implied interest rate minus the Treasury yield for the
corresponding maturity. The three-month implied interest rates are implied interest rates that we estimate from equity index futures contracts on the S&P 500.
The six- and 12-month implied interest rates are SPX option box spreads from van Binsbergen, Diamond, and Grotteria (2022). Panel A reports correlations
estimated using data from June 2006 to December 2017. Panel B reports correlations estimated using data from January 2010 to December 2017.

Panel A: Correlations, June 2006 to December 2017

3m LIBOR 6m LIBOR 12m LIBOR 3m Treas. 6m Treas. 12m Treas. Dealer
Basis Basis Basis Basis Basis Basis Positions

3m LIBOR Basis 1.00
6m LIBOR Basis 0.52 1.00
12m LIBOR Basis 0.37 0.87 1.00
3m Treasury Basis 0.18 -0.41 -0.17 1.00
6m Treasury Basis -0.21 -0.36 -0.08 0.81 1.00
12m Treasury Basis -0.22 -0.39 -0.04 0.80 0.94 1.00
Dealer Positions -0.25 0.13 -0.01 -0.32 -0.18 -0.26 1.00

Panel B: Correlations, January 2010 to December 2017

3m LIBOR 6m LIBOR 12m LIBOR 3m Treas. 6m Treas. 12m Treas. Dealer
Basis Basis Basis Basis Basis Basis Positions

3m LIBOR Basis 1.00
6m LIBOR Basis 0.54 1.00
12m LIBOR Basis 0.51 0.94 1.00
3m Treasury Basis 0.87 0.30 0.28 1.00
6m Treasury Basis 0.17 0.43 0.35 0.44 1.00
12m Treasury Basis 0.16 0.36 0.38 0.41 0.87 1.00
Dealer Positions -0.55 -0.32 -0.30 -0.28 0.20 0.09 1.00
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VII. Studying the Properties of the Trading Strategies

We return to the LMH trading strategies and more closely study their properties. We study

the trading strategies’ relationship with other known return factors for equity indices, whether

cross-sectional or time-series variation is more important for the strategies’ returns, the holding-

period returns of the strategies, and the relationship between the strategies’ returns and funding

conditions.

A. Spanning Tests and Factor Exposures

Table IA.XIV reports regression results of the LMH strategy returns on other known re-

turn factors in equity indices: value and momentum (from Asness, Moskowitz, and Pedersen

(2013), updated from the AQR Data library), time-series momentum from Moskowitz, Ooi, and

Pedersen (2012), updated from the AQR Data Library), and carry (from Koijen, Moskowitz,

Pedersen, and Vrugt (2018)). We also include the returns of a weekly rebalanced, passive long

strategy holding an equal weight in each of the equity indices in our sample, as well as the

returns to one-week reversal strategies, as independent variables in the regressions. Since the

returns of other return predictors are available at a monthly frequency, we aggregate the returns

of the weekly rebalanced portfolios to a monthly frequency and run the regressions.

The first two columns report results for the LMH strategies implemented in futures. The

cross-sectional LMH portfolio in futures loads positively on the momentum portfolio (t-statistic

2.48), but insignificantly on the other factors. The strategy earns an alpha of 56 bps per month

(t-statistic 3.44), with an annualized information ratio (alpha divided by residual volatility)

of 0.86. In the second column, the timing portfolio in futures has a positive loading on the

momentum portfolio (t-statistic 3.35), the passive long portfolio (t-statistic 3.61), and the one-

week reversal strategy (t-statistic 2.98). The timing portfolio has a negative loading on time-

series momentum (t-statistic -4.27). The strategy earns an alpha of 118 bps per month (t-
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statistic 3.07), with an annualized information ratio of 0.76.

The third and fourth columns of the table report regression results using returns of LMH

strategies implemented in the spot market. The factor loadings are similar to the strategies

trading in futures. The cross-sectional portfolio earns a monthly alpha of 41 bps per month

(t-statistic 2.49), corresponding to an information ratio of 0.62, and the timing portfolio earns

a monthly alpha of 91 bps per month (t-statistic 2.39), corresponding to an information ratio

of 0.59. The results indicate that the LMH strategy returns are not explained by exposure to

other well-known factors in global equity indices. Notably, the evidence also suggests that

the LMH strategies capture a distinct dimension of liquidity provision from reversal strategies.

Additionally, the LMH timing strategies are strongly negatively correlated with time-series

momentum. This is consistent with the results in Moskowitz, Ooi, and Pedersen (2012) that

“speculators” (primarily hedge funds and commodity trading advisors) trade time-series mo-

mentum in futures contracts. For equity indices, we show that dealers are primarily on the other

side of hedge fund trading. The results suggest that conditional on the negative exposure to the

time-series momentum strategy, trading in the same direction as liquidity providers in equity

index markets carries a high alpha, consistent with liquidity providers earning compensation

for absorbing demand.

B. What Variation Matters for Return Predictability?

We next decompose the LMH strategies to better understand what variation in the basis is

important for explaining the strategy returns.

We first study whether the LMH time-series strategies’ returns come from capturing com-

mon time-series variation in the basis across indices, or whether index-specific time-variation

in the basis is the primary driver. We decompose the LMH time-series portfolio into a basket

timing portfolio, which takes an equal weight in each index equal to the average weight of all

securities in that period in the LMH time-series portfolio, w̄t = 1
N

∑N
i=1w

i
t, and an idiosyn-
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cratic timing portfolio, in which the weight of asset i is equal to the difference between asset

i’s weight in the LMH portfolio and the basket timing portfolio, wi
t,idiosyncratic = wi

t − w̄t. The

basket timing portfolio captures the strategy returns related to common time-series variation in

the basis across indices, while the idiosyncratic timing portfolio captures the strategy returns

coming from index-specific time-variation in the basis.

Panel A of Table IA.XV reports statistics on the returns of the basket timing and idiosyn-

cratic timing portfolios. The average annualized return of the idiosyncratic timing portfolio

is 9.95% in futures markets and 6.90% in spot markets, corresponding to annualized Sharpe

ratios of 0.83 and 0.59. The averaged annualized return of the basket timing portfolio is 5.15%

in futures markets and 4.75% in spot markets, corresponding to annualized Sharpe ratios of

0.28 and 0.26. The basket timing portfolio is more volatile (approximately 19% annualized)

than the index timing portfolio (approximately 12% annualized), indicating that common time-

series variation in returns across indices accounts for a more substantial share of variation in

the timing portfolio’s returns. Despite its lower share of variation in LMH strategy returns, the

idiosyncratic timing portfolio accounts for more than half of the LMH strategy’s returns, indi-

cating that index-specific time-series variation in the basis plays an especially important role

for explaining the return predictability of the basis.

We also study the LMH cross-sectional strategy to understand whether the cross-sectional

return predictability of the basis comes from capturing static differences in the basis (and re-

turns) across indices, or whether time-varying differences in the basis across indices play a

role. To do so, we decompose the cross-sectional trading strategy into a static portfolio and a

dynamic portfolio. The weight of asset i in the static portfolio in each period is equal to the

average weight of asset i in the LMH portfolio over the full sample, w̄i ≡ 1
T

∑T
t=1w

i
t. The

weight of asset i in the dynamic portfolio at time t is equal to the difference between its weight

in the LMH portfolio and the static portfolio, wi
t,dynamic = wi

t − w̄i.

Panel B of Table IA.XV reports statistics on the returns of the static and dynamic portfolios.
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The average annualized return of the dynamic portfolio is 6.1% in the futures market and 4.2%

in the spot market, corresponding to annualized Sharpe ratios of 0.77 and 0.53. The average

annualized return of the static portfolio is 1.14% in the futures market and 1.04% in the spot

market, corresponding to Sharpe ratios of 0.38 and 0.36. The results indicate that the lion’s

share of cross-sectional return predictability (upwards of 80%) comes from dynamic variation

of the basis.

The results from Table IA.XV indicate that cross-sectional variation in the basis plays an

especially important role in explaining the return predictability of the basis. Moreover, return

predictability does not stem just from indices having more a negative basis on average having

higher returns in our sample. Rather, it stems from indices having higher returns precisely

when their basis is more negative, suggesting that the basis captures dynamic information about

market returns.

C. Holding Period Returns

In Figure IA.8, we plot the returns of the LMH liquidity demand strategies with different

rebalance frequencies: weekly and monthly rebalancing (as reported in Table VI), as well as

quarterly, semi-annual, and annual rebalancing. The figure reveals that the majority of the

trading strategy returns are captured by a one-month holding period. For holding periods of

one quarter or longer, the Sharpe ratio of the cross-sectional strategies is around 0.2, while it

is lower for the time-series strategies. The decay of the strategies’ returns for longer holding

periods is faster, for example, than time-series momentum strategies in equity index futures

(Moskowitz, Ooi, and Pedersen (2012)), where holding-period returns remain almost equally

as strong at the quarterly as the month frequency, and remain significant for holding periods of

up to 12 months.

To better understand the holding-period returns, in Figure IA.10 we analyze the returns of

the LMH trading strategies formed using lagged values of the basis. For the cross-sectional
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strategy, strategy returns are similarly strong for lags of up to two weeks. The strategy perfor-

mance decays substantially for longer lags, although returns remain modestly positive, consis-

tent with the performance of the static portfolios. The time-series strategy returns decay more

quickly, where most of the strategy performance is concentrated in lags of less than two weeks.

Another way to understand the holding-period returns of the strategies is by directly ana-

lyzing the persistence of the basis and dealer futures positions. The first plot in Figure IA.9

displays the daily autocorrelation function for the basis, estimated over all indices in our sam-

ple. The daily AR(1) coefficient is 0.7, and autocorrelations decay nearly monotonically over

time. The autocorrelation of the basis with the one-month lagged basis is about 0.2, consistent

with much of its return predictability occurring within a month. Autocorrelations of the ba-

sis remain significant for lags of up to 90 weekdays. The second plot in Figure IA.9 displays

the weekly autocorrelation function plot for dealer positions, estimated for U.S. indices. The

weekly AR(1) coefficient is 0.96, with autocorrelations decaying monotonically over time. The

evidence suggests that net dealer positions are even more persistent than captured by the basis.

The persistence of dealer positions, the basis, and its return predictability is notable when com-

pared to the evidence in individual stocks, where liquidity providers only hold inventories on

the order of a few days.6 The persistence of the basis and dealer futures positions are consistent

with the interpretation that the basis is capturing a different dimension of liquidity provision

than short-term reversals, which also supports our previous evidence.

D. Aggregate Funding Conditions and LMH Trading Strategies

In this section, we evaluate the relationship between the LMH trading strategies and aggre-

gate funding conditions. The logic behind this analysis is that deteriorating funding conditions

may correspond to shocks to the risk-bearing capacity of leveraged investors that face binding

6For example, Hansch, Naik, and Viswanathan (1998) and Hendershott and Menkveld (2014) report average

half-lives of dealer inventory positions of two days or less on the London and New York Stock Exchanges.
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funding constraints, which in turn cause these investors to deleverage and reduce their posi-

tions. Liquidity providers are traditionally assumed to be leveraged investors that may face

funding constraints (for example, in Brunnermeier and Pedersen (2008)), which may suggest

that the LMH trading strategies should perform poorly coincident with deteriorating funding

conditions.7 However, this effect may be muted by leveraged investors on the demand side that

also face funding constraints, and reduce their futures positions when funding liquidity shocks

hit.8

We run regressions of the LMH liquidity demand strategy returns on variables related to ag-

gregate funding conditions. These variables include the intermediary capital risk factor of He,

Kelly, and Manela (2017) (which proxies for innovations to the intermediary sector’s marginal

value of wealth), innovations to the Treasury minus Eurodollar (TED) spread (as a measure of

shocks to the ease or difficulty with which intermediaries may finance positions), and innova-

tions to the VIX (as a measure of volatility risk and shocks to the level of aggregate risk). We

also include the lagged monthly level of the VIX. Nagel (2012) shows that the VIX positively

predicts the returns of five-day reversal strategies, capturing the increased returns that liquidity

providers require when volatility is high. All variables are signed such that positive coefficients

correspond to the trading strategies performing poorly coincident with shocks to volatility and

funding liquidity.

Panel A of Table IA.XVI reports results from univariate regressions, while Panel B reports

results from regressions that include a control for the global market return, which we construct

as the return of a weekly rebalanced, equally weighted basket of the indices in the sample. All

returns in the regression are multiplied by 100, and the liquidity variables are standardized so

7Drechsler, Moreira, and Savov (2021) present an alternative channel through which volatility shocks may

be negatively related to the returns to liquidity provision strategies, showing that liquidity provider positions are

directly exposed to volatility shocks in a Kyle (1985) model with stochastic volatility.

8For example, this is the story in Brunnermeier, Nagel, and Pedersen (2008), who suggest that speculators

executing the carry trade in currencies unwind their positions during deteriorating financial conditions.
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that coefficients can be interpreted as percentage point change in returns in response to a one-

standard-deviation change in the variable. The timing strategies implemented in the futures

market and in the spot market have significant loadings on the intermediary capital ratio factor,

the TED spread, and shocks to the VIX, with the expected signs. The coefficients indicate

that one standard deviation shocks to these variables correspond to a change in weekly returns

of 44 bps to 68 bps, with t-statistics ranging from 4.16 for the TED spread to 6.99 for the

intermediary capital ratio. However, after controlling for the market return, in Panel B, only the

loading on the TED spread remains significant, with coefficients of 0.31 and 0.28 in futures and

spot markets (t-statistics 2.91 and 2.69). The cross-sectional strategies do not have statistically

significant loadings in any of the specifications, with many of the signs going in the opposite

direction as predicted.

The results suggest that the LMH iquidity demand returns are modestly affected by ag-

gregate funding conditions. Given the abundance of theoretical and empirical evidence that

aggregate funding conditions should matter for the returns of liquidity provision strategies,

this modest result seems a bit surprising. However, deteriorating funding conditions may also

reduce futures demand, which provides a counterbalancing effect. To test this idea, we use in-

vestor futures positions data to examine investor behavior coincident with funding liquidity and

volatility shocks, following an approach similar in spirit to Brunnermeier, Nagel, and Pedersen

(2008). Using the net positions data from the Traders in Financial Futures report, we run panel

regressions of the form

∆F i,c
t = βV IX ×∆V IXt × sign(F i,c

t−1) + λV IXF
i,c
t−1 + ηi,V IX (1)

∆F i,c
t = βTED∆TEDt × sign(F i,c

t−1) + λTEDF
i,c
t−1 + ηi,TED (2)

∆F i,c
t = βHKM(−HKMt)× sign(F i,c

t−1) + λHKMF i,c
t−1 + ηi,HKM , (3)

where F i,c
t is the net futures position of investor category c in index i at time t, ∆V IXt and
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∆TEDt are innovations to the TED spread and the VIX, HKMt is the intermediary capital

risk factor from He, Kelly, and Manela (2017), and the η terms are asset fixed effects. The betas

in the regression are the coefficients of interest. The signs on the coefficients capture whether,

in aggregate, investors in a particular category expand (positive sign) or contract (negative sign)

their positions in response to shocks to funding conditions.

Table IA.XVII reports the results. For dealer net positions, the coefficients are negative but

insignificant. If funding liquidity shocks correspond to futures supply being withdrawn, we ex-

pect a negative coefficient on dealer net futures positions. The regressions do present evidence

that hedge funds reduce their net futures positions in response to volatility shocks (t-statistic

-3.22) and shocks to the intermediary capital risk factor (t-statistic -3.09). The LMH liquidity

demand strategies take positions opposite hedge fund and institutional investor positioning. If

hedge funds liquidate their positions (which would be consistent with de-risking when funding

liquidity and volatility shocks hit), investors with positions opposite hedge funds may actually

be buoyed by the liquidation of hedge fund net positions. However, the effects are not strong

enough that the LMH strategies perform better in periods of deteriorating conditions, suggest-

ing that the shocks likely also affect liquidity providers in the stock market, whose positions

we do not observe.

Our results suggest that both demanders and suppliers of equity index liquidity are likely

to be affected by aggregate funding conditions. Volatility shocks and funding shocks likely

correspond to the withdrawal of liquidity supply by liquidity providers and futures dealers, but

likely also correspond to reductions in demand for equity exposure from futures end-users. In

sum, these effects may cancel out, which can lead to the weak relationship we observe between

the LMH liquidity demand strategy returns and proxies for funding liquidity and volatility

shocks.
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Table IA.XIV
LMH Liquidity Demand Exposure to Other Factors

The table reports regression results for each LMH liquidity demand portfolio’s returns on a set of other portfolio
returns for factors that explain the cross-section of asset returns: passive long portfolio returns (equal-weighted
average of all securities), a one-week reversal factor, the value and momentum factors of Asness, Moskowitz,
and Pedersen (2013), the time-series momentum (TSMOM) factor of Moskowitz, Ooi, and Pedersen (2012), and
the carry factor of Koijen, Moskowitz, Pedersen, and Vrugt (2018), each calculated for global equity indices and
updated through the end of our sample. The returns are scaled to be in percentage points by multiplying by 100.
The table reports intercepts or alphas (in percent) from regressing the LMH liquidity demand strategy returns on
the other factor returns, as well as the regression coefficients or betas on the various factors. The last two rows
report the R2 from the regression and the information ratio, IR, which is the alpha divided by the residual volatility
from the regression. t-statistics are reported in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Futures Returns Spot Returns

XS TS XS TS

Value 0.10 0.13 0.12 0.16
(1.33) (0.72) (1.59) (0.94)

Momentum 0.18∗∗ 0.57∗∗∗ 0.20∗∗∗ 0.58∗∗∗

(2.48) (3.35) (2.72) (3.40)

Carry 0.01 -0.02 0.02 -0.00
(0.47) (-0.24) (0.75) (-0.06)

TSMOM -0.01 -0.23∗∗∗ -0.01 -0.23∗∗∗

(-0.35) (-4.27) (-0.49) (-4.38)

PassiveLong -0.02 0.27∗∗∗ -0.02 0.26∗∗∗

(-0.52) (3.61) (-0.48) (3.61)

1W Reversal-XS -0.00 -0.02
(-0.05) (-0.28)

1W Reversal-TS 0.14∗∗∗ 0.14∗∗∗

(2.98) (2.95)

α 0.56∗∗∗ 1.18∗∗∗ 0.41∗∗ 0.91∗∗

(3.44) (3.07) (2.49) (2.39)

R2 0.04 0.18 0.05 0.19
IR 0.86 0.76 0.62 0.59

49



Table IA.XV
Components of Basis Return Predictability

Panel A reports statistics on the LMH time-series trading strategy, decomposed into two components: a basket timing portfolio, which equally weights each
index in each period using the average weight across all indices in the LMH timing portfolio in that period, and an idiosyncratic timing portfolio, where
the weight of an index is equal to the difference between weight of the index in the LMH timing portfolio and the weight of the index in the basket timing
portfolio. Panel B reports statistics for the LMH cross-sectional trading strategy, decomposed into two components: a static portfolio, where the weight of
an index in a given period is the average weight of the security in the LMH cross-sectional portfolio over the full sample, and a dynamic portfolio, where the
weight of each index in each period is the difference between its weight in the LMH cross-sectional portfolio and the static portfolio.

Panel A: LMH Time-Series Strategies, Basket Timing versus Idiosyncratic Timing Performance

Idiosyncratic Timing Returns Basket Timing Returns

Weekly Annualized Annualized Annualized Weekly Annualized Annualized Annualized
Mean Mean Volatility Sharpe Ratio Mean Mean Volatility Sharpe Ratio

Futures Market 0.19% 9.95% 11.97% 0.83 0.10% 5.15% 18.63% 0.28
Spot Market 0.13% 6.90% 11.75% 0.59 0.09% 4.75% 18.53% 0.26

Panel B: Cross-Sectional Strategies, Static versus Dynamic Performance

Dynamic Portfolio Returns Static Portfolio Returns

Weekly Annualized Annualized Annualized Weekly Annualized Annualized Annualized
Mean Mean Volatility Sharpe Ratio Mean Mean Volatility Sharpe Ratio

Futures Market 0.12% 6.07% 7.85% 0.77 0.02% 1.14% 3.02% 0.38
Spot Market 0.08% 4.18% 7.84% 0.53 0.02% 1.04% 2.90% 0.36
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Table IA.XVI
LMH Liquidity Demand Strategies, Liquidity, and Volatility

The table reports the alphas and betas from regressions of the weekly returns of the LMH liquidity demand strategies on measures related to liquidity provision.
The measures include the intermediary capital ratio factor from He, Kelly, and Manela (2017), the Treasury minus Eurodollar (TED) spread, the lagged level
of the VIX, and changes in the VIX. Independent variables are signed such a positive coefficient corresponds to the strategy performing worse coincident
with deteriorating conditions, and performs better when the level of the VIX is high in the previous period. Returns in the regression are multiplied by 100.
t-statistics are reported in parentheses. The regressions in Panel A are univariate regressions, while the regressions in Panel B include the returns of an equally
weighted basket of the equity indices in the sample, rebalanced weekly, as a control.

Panel A: Loadings on Liquidity Variables, No Market Control

Timing Strategies Cross-Sectional Strategies

Futures Spot Futures Spot

HKM TED VIX ∆VIX HKM TED VIX ∆VIX HKM TED VIX ∆VIX HKM TED VIX ∆VIX

Intercept 0.29 0.28 0.27 0.27 0.23 0.21 0.21 0.21 0.13 0.14 0.14 0.14 0.10 0.10 0.10 0.10
(2.97) (2.88) (2.80) (2.87) (2.37) (2.24) (2.19) (2.22) (3.44) (3.65) (3.66) (3.65) (2.49) (2.65) (2.72) (2.66)

β 0.68 0.47 0.07 0.55 0.64 0.44 0.04 0.52 0.00 -0.05 -0.01 -0.03 -0.03 -0.04 -0.04 -0.05
(6.99) (4.41) (0.77) (5.97) (6.60) (4.16) (0.40) (5.68) (0.07) (-1.13) (-0.38) (-0.79) (-0.69) (-1.00) (-1.05) (-1.42)

Panel B: Loadings on Liquidity Variables with Market Control

Timing Strategies Cross-Sectional Strategies

Futures Spot Futures Spot

HKM TED VIX ∆VIX HKM TED VIX ∆VIX HKM TED VIX ∆VIX HKM TED VIX ∆VIX

Intercept 0.30 0.28 0.27 0.28 0.24 0.21 0.21 0.22 0.13 0.14 0.14 0.14 0.10 0.10 0.10 0.10
(3.06) (2.98) (2.92) (2.98) (2.45) (2.31) (2.28) (2.32) (3.44) (3.62) (3.64) (3.63) (2.49) (2.61) (2.68) (2.62)

β -0.03 0.31 0.06 -0.19 -0.06 0.28 0.03 -0.20 0.00 -0.05 -0.01 -0.04 -0.02 -0.04 -0.04 -0.05
(-0.18) (2.91) (0.68) (-1.33) (-0.41) (2.69) (0.30) (-1.41) (0.04) (-1.06) (-0.38) (-0.66) (-0.37) (-0.82) (-1.06) (-0.85)
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Table IA.XVII
Investor Positions, Funding Liquidity Shocks, and Volatility Shocks

The table reports results from panel regressions of changes in net futures positions on the intermediary capital risk factor from He, Kelly, and Manela (2017),
innovations in the VIX, and innovations in the TED spread, interacted with the sign of futures positions in the previous period. Observations are weekly.
t-statistics are reported in parentheses. Standard errors are clustered by entity and time. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

∆FDealer
t ∆FHedge Fund

t ∆F Institutional
t ∆FOther

t

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆V IXt × sign(Ft−1) -0.03 -0.09∗∗ -0.06 0.01
(-0.77) (-3.22) (-0.79) (0.67)

∆TEDt × sign(Ft−1) -0.03 -0.02 -0.06 -0.01
(-0.78) (-0.91) (-2.10) (-0.73)

HKMt × sign(Ft−1) -0.02 -0.07∗∗ -0.04 0.01
(-0.51) (-3.09) (-0.58) (0.34)

Ft−1 -0.17∗∗∗ -0.17∗∗∗ -0.17∗∗∗ -0.25∗∗∗ -0.25∗∗∗ -0.25∗∗∗ -0.18∗∗∗ -0.18∗∗∗ -0.18∗∗∗ -0.21∗∗∗ -0.21∗∗∗ -0.21∗∗∗

(-5.52) (-5.38) (-5.43) (-6.06) (-6.10) (-6.34) (-5.50) (-5.42) (-5.52) (-24.21) (-24.02) (-23.85)

R2 0.02 0.02 0.02 0.04 0.03 0.04 0.02 0.02 0.02 0.04 0.04 0.04
Observations 2874 2874 2874 2874 2874 2874 2874 2874 2874 2874 2874 2874
Entity FE Yes Yes Yes Yes Yes Yes Yes Yes
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Figure IA.8. Holding period returns of the basis. The figure displays the annualized Sharpe
ratios of the LMH liquidity demand strategy returns with different rebalance frequencies:
weekly and monthly (as reported in Table VI), as well as quarterly, semi-annually, and an-
nually. The Sharpe ratios of the cross-sectional strategies are plotted in blue, and the Sharpe
ratios of the time-series strategies are plotted in red.

53



Figure IA.9. Autocorrelations of the basis and dealer positions. The first plot displays the
daily autocorrelation function of the basis in global equity markets, estimated from January
2000 through December 2017. The second plot displays the weekly autocorrelation function
of dealer positions in U.S. equity index futures markets, estimated from June 2006 through
December 2017. For both plots, the values are calculated via a univariate panel regression of
the variable of interest on lagged values of the variable, including entity fixed effects. Standard
errors are clustered by index and time. The dotted lines represent the 95% confidence interval
for the autocorrelation coefficients.
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Figure IA.10. Signal lagging and strategy performance. The figure plots the Sharpe ratio
of LMH liquidity demand portfolios. The portfolios are formed following equation (18) and
equation (20), where the signals are constructed by using an n-day lagged futures-spot basis (in
addition to the one-day implementation lag in the main specification). The x-axis in the figure
corresponds to different values of n and the y-axis corresponds to the Sharpe ratio of returns.
Results are presented for trading strategies exclusively trading in futures and trading strategies
exclusively trading in the spot market. The first plot corresponds to the cross-sectional strategy
and the second plot to the timing strategy.
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VIII. Securities Lending Fees

A. Securities Lending Fee Data and Measure Construction

We combine stock-level security lending data from MSF with the index weights of individ-

ual constituents in each index to create a weighted average of borrowing costs for each index.

We winsorize the data at the 1st and 99th percentiles to avoid the impact of potential data errors.

When lending data are not available for a stock, we exclude it from our index-level calculations

and renormalize the index weight for each stock with data; this is equivalent to assuming that

stocks with missing data have the same value as the index-weighted average of all remaining

stocks. We also winsorize the resulting index-level values at the 1st and 99 percentiles.

The MSF data set has good coverage for our sample, as summarized in Table IA.XVIII. In

2004, the beginning of the sample, we cover at least 80% of the index for 14 of the 18 indices

we study, and cover at least 80% of the market cap weight of the indices in our sample by 2008.

B. Security Lending Fee Summary Statistics

Table IA.XIX presents summary statistics of the annnualized index lending series. The av-

erage index lending fee is 47 bps across the indices in our sample, and the average standard

deviation of the index security lending fee is 17 bps. The S&P 500 and DJIA indices have the

lowest security lending fees (28 bps on average), with standard deviations of 8 and 9 bps, re-

spectively, while the Russell 2000 and Spanish IBEX indices have the highest security lending

fees (69 and 70 bps on average), with standard deviations of 18 bps and 36 bps.

The securities lending fee data present some interesting insights for understanding the

futures-cash basis. First, the basis is close to zero on average; however, security lending fees

are positive. If dealers earned the full index security lending fee in their transactions, we may

expect the basis to be exactly the negative value of the security lending fee. Given that this is

not true on average, there are likely other important costs embedded in the basis that are not

56



captured by securities lending fees. Second, securities lending fees display considerably less

time-series variation than the basis. This indicates that lending fees may be useful for capturing

some of the slower-moving dynamics of the basis, but likely do not capture all factors that may

move the basis.

C. Basis Trading Strategy Adjusting for Security Lending Fees

Given the expected relationship between the futures-cash basis and security lending fees, an

interesting question is whether our index security lending fee measure can account for the return

predictability of the basis. We evaluate this question by constructing a fee-adjusted measure of

the basis for each index i by adding the basis and security lending fee together, adjbasisi,t =

basisi,t + feei,t. We then form weekly rebalanced trading strategies, as in our main analysis.

If the lending fee explains the variation in the basis relevant for return predictability, then we

expect the adjusted trading strategies to have muted performance.

The cross-sectional strategy formed using the adjusted basis earns an annualized Sharpe

ratio of 1.02 in futures markets and 0.83 in spot markets. The timing strategy formed using

the adjusted basis earns an annualized Sharpe ratio of 0.26 in the spot markets. Cross-sectional

trading strategies formed by sorting on the unadjusted basis over the sample for which we have

lending fee data have annualized Sharpe ratios of 0.92 and 0.76, and the corresponding timing

strategies earn Sharpe ratios of 0.63 and 0.52 in futures and spot markets.

The results suggest that our security lending fee measure explains none of the cross-

sectional return predictability of the basis, but may be able to explain some of the time-series

return predictability. The results are consistent with the finding in the main text that the security

lending fee measure is able to explain time-series variation in the basis, but has limited ability

to explain cross-sectional variation. The modest explanatory power of our security lending fee

measure for the basis and its return predictability may stem from the fact that the security lend-

ing fee measure is an imperfect proxy for the true measure we are interested in, the marginal
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lending fee that dealers charge in lending transactions, and also the fact that while security

lending fees may be especially important for some indices in our sample, they may be less

relevant for other indices (e.g., the S&P500, where shares are easy to locate and borrow).

58



Table IA.XVIII
Markit Securities Finance Data Coverage Across Indices

For each index, the table reports information on data coverage in the Markit Securities Finance (MSF) database.
“Average Index Weight Across Time” reports the time-series average of the percentage of an index for which we
have securities lending data available. “First Date with 80% Coverage” reports the first date for which our data
coverage in MSF exceeds 80% of the index weight of a given index. Number of Observations is the number of
valid daily observations available in our dataset.

Average Index
Weight Coverage

Across Time

First Date with 80%
Coverage

Number of
Observations

AU 99.9% 8/2/2004 3420
BD 99.4% 8/2/2004 3420
CN 98.5% 8/2/2004 3420
DJIA 100.0% 8/2/2004 3420
ES 94.6% 8/2/2004 3420
EUROSTOXX 97.0% 8/2/2004 3420
FR 98.6% 8/2/2004 3420
HK 79.6% 11/29/2007 3420
IT 92.0% 8/2/2004 3420
JP 85.3% 12/15/2005 3420
NASDAQ 99.8% 8/2/2004 3420
NL 81.8% 8/2/2004 3420
SD 99.3% 8/2/2004 3420
SW 99.4% 8/2/2004 3420
UK 97.5% 8/2/2004 3420
U.S. 99.7% 8/2/2004 3420
USRU2K 99.9% 8/2/2004 3420
USSPMC 99.8% 8/2/2004 3420

59



Table IA.XIX
Securities Lending Fee Summary Statistics

The table reports the time-series average and time-series standard deviation of the index security lending fee
measure for each index in our sample. Fees are reported in annualized bps.

Average Standard Deviation

AU 64 16
BD 44 16
CN 39 17
DJIA 28 9
ES 70 36
EUROSTOXX 45 18
FR 48 25
HK 57 24
IT 52 15
JP 53 21
NASDAQ 33 14
NL 43 9
SD 53 21
SW 42 14
UK 42 12
U.S. 28 8
USRU2K 69 18
USSPMC 38 15

Average 47 17
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